File size: 12,219 Bytes
e85fe1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from compel import Compel, ReturnedEmbeddingsType
import logging
from abc import ABC
import uuid

import diffusers
import torch
from diffusers import StableDiffusionXLPipeline, DiffusionPipeline

import numpy as np
import threading

import base64
from io import BytesIO
from PIL import Image
import numpy as np
from tempfile import TemporaryFile
from google.cloud import storage
import sys
import sentry_sdk
from flask import Flask, request, jsonify, current_app
import os
from sequential_timer import SequentialTimer
from safetensors.torch import load_file
from dotenv import load_dotenv
import copy
import gc


logger = logging.getLogger(__name__)
logger.info("Diffusers version %s", diffusers.__version__)

from axiom_logger import AxiomLogger
axiom_logger = AxiomLogger()

sentry_sdk.init(
    dsn="https://f750d1b039d66541f344ee6151d38166@o4505891057696768.ingest.sentry.io/4506071735205888",
)

LORAS_DIR = './safetensors'

load_dotenv()

lora_lock = threading.Lock()

# handler_lock = threading.Lock()
# handler_index = 0

# class LoraCache():
#     def __init__(self, loras_dir: str = LORAS_DIR):
#         self.loras_dir = loras_dir
#         self.cache = {}

#     def load_lora(self, lora_name: str):
#         if lora_name.endswith('.safetensors'):
#             lora_name = lora_name.rstrip('.safetensors')
#         if lora_name not in self.cache:
#             lora = load_file(os.path.join(self.loras_dir, lora_name+'.safetensors'))
#             self.cache[lora_name] = lora
#         return copy.deepcopy(self.cache[lora_name])
    
# lora_cache = LoraCache()

class DiffusersHandler(ABC):
    """
    Diffusers handler class for text to image generation.
    """

    def __init__(self):
        self.initialized = False
        self.req_id = None

    def initialize(self, properties):
        """In this initialize function, the Stable Diffusion model is loaded and
        initialized here.
        Args:
            ctx (context): It is a JSON Object containing information
            pertaining to the model artefacts parameters.
        """
        
        logger.info("Loading diffusion model")
        logger.info("I'm totally new and updated")


        device_str = "cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() and properties.get("gpu_id") is not None else "cpu"
        self.device_str = device_str
        
        print("my device is " + device_str)
        self.device = torch.device(device_str)
        self.pipe = StableDiffusionXLPipeline.from_pretrained(
            "./",
            torch_dtype=torch.float16,
            use_safetensors=True,
        )
        # self.refiner = DiffusionPipeline.from_pretrained(
        #     "stabilityai/stable-diffusion-xl-refiner-1.0",
        #     text_encoder_2=self.pipe.text_encoder_2,
        #     vae=self.pipe.vae,
        #     torch_dtype=torch.float16,
        #     use_safetensors=True,
        #     variant="fp16",
        # )
        # self.refiner.enable_model_cpu_offload(properties.get("gpu_id"))
        # logger.info("Refiner initialized and o")

        self.compel_base = Compel(
                    tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
                    text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
                    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
                    requires_pooled=[False, True])
        logger.info("Compel initialized")
        
        # self.compel_refiner = Compel(
        #     tokenizer=[self.refiner.tokenizer_2],
        #     text_encoder=[self.refiner.text_encoder_2],
        #     returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
        #     requires_pooled=[True])
        
        logger.info("moving base model to device: %s", device_str)
        self.pipe.to(self.device)
                
        logger.info(self.device)
        logger.info("Diffusion model from path %s loaded successfully")
        axiom_logger.info("Diffusion model initialized", device=self.device_str)

        self.initialized = True

    def preprocess(self, raw_requests):
        """Basic text preprocessing, of the user's prompt.
        Args:
            requests (str): The Input data in the form of text is passed on to the preprocess
            function.
        Returns:
            list : The preprocess function returns a list of prompts.
        """
        logger.info("Received requests: '%s'", raw_requests)
        self.working = True
                
        model_args = {
            "prompt": raw_requests[0]["prompt"],
            "negative_prompt": raw_requests[0].get("negative_prompt"),
            "width": raw_requests[0].get("width"),
            "height": raw_requests[0].get("height"),
            "num_inference_steps": raw_requests[0].get("num_inference_steps", 30),
            "guidance_scale": raw_requests[0].get("guidance_scale", 8.5)
            # "lora_weights": raw_requests[0].get("lora_name", None)
            # "cross_attention_kwargs": {"scale": raw_requests[0].get("lora_scale", 0.0)}
        }

        extra_args = {
            "seed": raw_requests[0].get("seed", None),
            "style_lora": raw_requests[0].get("style_lora", None),
            "style_scale": raw_requests[0].get("style_scale", 1.0),
            "char_lora": raw_requests[0].get("char_lora", None),
            "char_scale": raw_requests[0].get("char_scale", 1.0),
            "scene_prompt": raw_requests[0].get("scene_prompt", None)
        }

        
        logger.info("Processed request: '%s'", model_args)
        axiom_logger.info("Processed request:" + str(model_args), request_id=self.req_id, device=self.device_str)
        return model_args, extra_args
        

    def inference(self, request):
        """Generates the image relevant to the received text.
        Args:
            inputs (list): List of Text from the pre-process function is passed here
        Returns:
            list : It returns a list of the generate images for the input text
        """

        # Handling inference for sequence_classification.
        # compel = Compel(tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2] , text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
        st = SequentialTimer()
        model_args, extra_args = request

        use_char_lora = extra_args['char_lora'] is not None
        use_style_lora = extra_args['style_lora'] is not None

        
        style_lora = extra_args['style_lora']
        char_lora = extra_args['char_lora']

        cross_attention_kwargs = {"scale": extra_args['char_scale'] if use_char_lora else extra_args['style_scale']}

        generator = torch.Generator(device="cuda").manual_seed(extra_args['seed']) if extra_args['seed'] else None


        prompt = model_args.pop("prompt")
        negative_prompt = model_args.pop('negative_prompt')
        scene_prompt = extra_args['scene_prompt']
        if scene_prompt:
            prompt = f'("{prompt}", "{scene_prompt}").and()'
        st.time("Base compel embedding")
        conditioning, pooled = self.compel_base(prompt)
        negative_conditioning, negative_pooled = self.compel_base(negative_prompt)
        
        [conditioning, negative_conditioning] = self.compel_base.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])

        if use_style_lora:
            style_lora = os.path.join(LORAS_DIR, style_lora + '.safetensors')
            st.time("Load style lora")
            self.pipe.load_lora_weights(style_lora)
            if use_char_lora:
                st.time("Fuse style lora into model")
                self.pipe.fuse_lora(lora_scale=extra_args['style_scale'], fuse_text_encoder=False)
        
        if use_char_lora:
            char_lora = os.path.join(LORAS_DIR, char_lora + '.safetensors')
            st.time('load character lora')
            self.pipe.load_lora_weights(char_lora)

        # lora_weights = model_args.pop("lora_weights")
        # if lora_weights is not None:
        #     lora_path = os.path.join(LORAS_DIR, lora_weights + '.safetensors')
        #     logger.info('LOADING LORA FROM: ' + lora_path)
        #     self.pipe.load_lora_weights(lora_path)

        # Handling inference for sequence_classification.
        st.time("base model inference")
        inferences = self.pipe(
            prompt_embeds=conditioning,
            pooled_prompt_embeds=pooled,
            negative_prompt_embeds=negative_conditioning,
            negative_pooled_prompt_embeds=negative_pooled,
            generator=generator,
            cross_attention_kwargs=cross_attention_kwargs,
            **model_args
        ).images

        if use_style_lora and use_char_lora:
            st.time("unfuse lora weights")
            self.pipe.unfuse_lora(unfuse_text_encoder=False)
            
        if use_style_lora or use_char_lora:
            st.time("unload lora weights")
            self.pipe.unload_lora_weights()
        
        st.time('end')
        
        # logger.info("Generated image: '%s'", inferences)
        axiom_logger.info("Generated images", request_id=self.req_id, device=self.device_str, timings=st.to_str())
        return inferences

    def postprocess(self, inference_outputs):
        """Post Process Function converts the generated image into Torchserve readable format.
        Args:
            inference_outputs (list): It contains the generated image of the input text.
        Returns:
            (list): Returns a list of the images.
        """
        bucket_name = "outputs-storage-prod"
        client = storage.Client()
        self.working = False
        bucket = client.get_bucket(bucket_name)
        outputs = []
        for image in inference_outputs:
            image_name = str(uuid.uuid4())

            blob = bucket.blob(image_name + '.png')

            with TemporaryFile() as tmp:
                image.save(tmp, format="png")
                tmp.seek(0)
                blob.upload_from_file(tmp, content_type='image/png')

            # generate txt file with the image name and the prompt inside
            # blob = bucket.blob(image_name + '.txt')
            # blob.upload_from_string(self.prompt)
            url_name = 'https://storage.googleapis.com/' + bucket_name + '/' + image_name + '.png'
            outputs.append(url_name)
            axiom_logger.info("Pushed image to google cloud: "+ url_name, request_id=self.req_id, device=self.device_str)
        return outputs


app = Flask(__name__)

# Initialize the handler on startup
gpu_count = torch.cuda.device_count()
if gpu_count == 0:
    raise ValueError("No GPUs available!")

worker_id = os.environ.get('WORKER_ID', 'Unknown')
if worker_id == 'Unknown':
    raise ValueError("No worker id")
    logger.critical("cant get worker ID")
logger.info(f"WORKER ID: {worker_id}")
handler = DiffusersHandler()
handler.initialize({"gpu_id": worker_id})


@app.route('/generate', methods=['POST'])
def generate_image():
    req_id = str(uuid.uuid4())
    selected_handler = None
    try:
        # Extract raw requests from HTTP POST body
        raw_requests = request.json
        axiom_logger.info(message="Received request", request_id=req_id, **raw_requests)

        gc.collect()
        torch.cuda.empty_cache()
        selected_handler = handler
        selected_handler.req_id = req_id

        processed_request = selected_handler.preprocess([raw_requests])
        inferences = selected_handler.inference(processed_request)
        outputs = selected_handler.postprocess(inferences)
        selected_handler.req_id = None
        return jsonify({"image_urls": outputs})
    except Exception as e:
        logger.error("Error during image generation: %s", str(e))
        axiom_logger.critical("Error during image generation: " + str(e), request_id=req_id, device=selected_handler.device_str)
        return jsonify({"error": "Failed to generate image", "details": str(e)}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=3000, threaded=False)