5p33ch3xpr
commited on
Commit
•
5046dec
1
Parent(s):
5da573b
update model card README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
model-index:
|
6 |
- name: XLS-R_Finetuned
|
7 |
results: []
|
@@ -13,6 +15,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
# XLS-R_Finetuned
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
|
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
@@ -31,25 +36,105 @@ More information needed
|
|
31 |
### Training hyperparameters
|
32 |
|
33 |
The following hyperparameters were used during training:
|
34 |
-
- learning_rate: 0.
|
35 |
-
- train_batch_size:
|
36 |
- eval_batch_size: 8
|
37 |
- seed: 42
|
38 |
- gradient_accumulation_steps: 2
|
39 |
-
- total_train_batch_size:
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
-
- lr_scheduler_warmup_steps:
|
43 |
-
- num_epochs:
|
44 |
- mixed_precision_training: Native AMP
|
45 |
|
46 |
### Training results
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
### Framework versions
|
51 |
|
52 |
-
- Transformers 4.
|
53 |
- Pytorch 1.12.1+cu113
|
54 |
- Datasets 2.6.1
|
55 |
- Tokenizers 0.13.1
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
model-index:
|
8 |
- name: XLS-R_Finetuned
|
9 |
results: []
|
|
|
15 |
# XLS-R_Finetuned
|
16 |
|
17 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2280
|
20 |
+
- Wer: 0.1725
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.00024
|
40 |
+
- train_batch_size: 1
|
41 |
- eval_batch_size: 8
|
42 |
- seed: 42
|
43 |
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 2
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 800
|
48 |
+
- num_epochs: 25
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
55 |
+
| 6.0094 | 0.32 | 500 | 3.5637 | 1.0 |
|
56 |
+
| 3.3935 | 0.64 | 1000 | 2.6589 | 1.0 |
|
57 |
+
| 1.5455 | 0.95 | 1500 | 0.7979 | 0.8225 |
|
58 |
+
| 0.9065 | 1.27 | 2000 | 0.5392 | 0.6244 |
|
59 |
+
| 0.7891 | 1.59 | 2500 | 0.3554 | 0.4551 |
|
60 |
+
| 0.7118 | 1.91 | 3000 | 0.3682 | 0.4608 |
|
61 |
+
| 0.6061 | 2.23 | 3500 | 0.3384 | 0.4416 |
|
62 |
+
| 0.5536 | 2.54 | 4000 | 0.2987 | 0.4042 |
|
63 |
+
| 0.547 | 2.86 | 4500 | 0.2892 | 0.3892 |
|
64 |
+
| 0.4841 | 3.18 | 5000 | 0.2890 | 0.3690 |
|
65 |
+
| 0.4434 | 3.5 | 5500 | 0.2605 | 0.3636 |
|
66 |
+
| 0.4542 | 3.81 | 6000 | 0.2932 | 0.3773 |
|
67 |
+
| 0.4171 | 4.13 | 6500 | 0.2768 | 0.3550 |
|
68 |
+
| 0.3697 | 4.45 | 7000 | 0.2443 | 0.3382 |
|
69 |
+
| 0.3776 | 4.77 | 7500 | 0.2572 | 0.3366 |
|
70 |
+
| 0.3448 | 5.09 | 8000 | 0.2267 | 0.3006 |
|
71 |
+
| 0.3285 | 5.4 | 8500 | 0.2377 | 0.3023 |
|
72 |
+
| 0.3165 | 5.72 | 9000 | 0.2344 | 0.2888 |
|
73 |
+
| 0.3194 | 6.04 | 9500 | 0.2228 | 0.2699 |
|
74 |
+
| 0.2737 | 6.36 | 10000 | 0.2201 | 0.2754 |
|
75 |
+
| 0.2986 | 6.68 | 10500 | 0.2413 | 0.2850 |
|
76 |
+
| 0.2836 | 6.99 | 11000 | 0.2117 | 0.2629 |
|
77 |
+
| 0.2467 | 7.31 | 11500 | 0.2408 | 0.2877 |
|
78 |
+
| 0.2577 | 7.63 | 12000 | 0.2134 | 0.2448 |
|
79 |
+
| 0.2503 | 7.95 | 12500 | 0.2260 | 0.2600 |
|
80 |
+
| 0.2371 | 8.26 | 13000 | 0.2081 | 0.2379 |
|
81 |
+
| 0.2303 | 8.58 | 13500 | 0.2322 | 0.2668 |
|
82 |
+
| 0.213 | 8.9 | 14000 | 0.2339 | 0.2586 |
|
83 |
+
| 0.2029 | 9.22 | 14500 | 0.2300 | 0.2704 |
|
84 |
+
| 0.2146 | 9.54 | 15000 | 0.2321 | 0.2533 |
|
85 |
+
| 0.2044 | 9.85 | 15500 | 0.2393 | 0.2685 |
|
86 |
+
| 0.2008 | 10.17 | 16000 | 0.2193 | 0.2467 |
|
87 |
+
| 0.182 | 10.49 | 16500 | 0.2323 | 0.2611 |
|
88 |
+
| 0.2 | 10.81 | 17000 | 0.2188 | 0.2537 |
|
89 |
+
| 0.1855 | 11.13 | 17500 | 0.2436 | 0.2523 |
|
90 |
+
| 0.1745 | 11.44 | 18000 | 0.2351 | 0.2473 |
|
91 |
+
| 0.1705 | 11.76 | 18500 | 0.2556 | 0.2663 |
|
92 |
+
| 0.1745 | 12.08 | 19000 | 0.2189 | 0.2229 |
|
93 |
+
| 0.1641 | 12.4 | 19500 | 0.2192 | 0.2342 |
|
94 |
+
| 0.1546 | 12.71 | 20000 | 0.2432 | 0.2228 |
|
95 |
+
| 0.1661 | 13.03 | 20500 | 0.2323 | 0.2242 |
|
96 |
+
| 0.1436 | 13.35 | 21000 | 0.2554 | 0.2496 |
|
97 |
+
| 0.1443 | 13.67 | 21500 | 0.2195 | 0.2026 |
|
98 |
+
| 0.151 | 13.99 | 22000 | 0.2400 | 0.2201 |
|
99 |
+
| 0.1333 | 14.3 | 22500 | 0.2181 | 0.2235 |
|
100 |
+
| 0.137 | 14.62 | 23000 | 0.2400 | 0.2254 |
|
101 |
+
| 0.1303 | 14.94 | 23500 | 0.2265 | 0.2088 |
|
102 |
+
| 0.1386 | 15.26 | 24000 | 0.2330 | 0.2152 |
|
103 |
+
| 0.1325 | 15.58 | 24500 | 0.2328 | 0.2127 |
|
104 |
+
| 0.1227 | 15.89 | 25000 | 0.2375 | 0.2077 |
|
105 |
+
| 0.1196 | 16.21 | 25500 | 0.2394 | 0.2144 |
|
106 |
+
| 0.1197 | 16.53 | 26000 | 0.2591 | 0.2171 |
|
107 |
+
| 0.1122 | 16.85 | 26500 | 0.2383 | 0.2066 |
|
108 |
+
| 0.1093 | 17.16 | 27000 | 0.2254 | 0.2042 |
|
109 |
+
| 0.105 | 17.48 | 27500 | 0.2330 | 0.2008 |
|
110 |
+
| 0.0982 | 17.8 | 28000 | 0.2317 | 0.1902 |
|
111 |
+
| 0.1072 | 18.12 | 28500 | 0.2332 | 0.1971 |
|
112 |
+
| 0.1033 | 18.44 | 29000 | 0.2313 | 0.1923 |
|
113 |
+
| 0.0982 | 18.75 | 29500 | 0.2344 | 0.1934 |
|
114 |
+
| 0.103 | 19.07 | 30000 | 0.2295 | 0.1902 |
|
115 |
+
| 0.0945 | 19.39 | 30500 | 0.2352 | 0.1976 |
|
116 |
+
| 0.0892 | 19.71 | 31000 | 0.2414 | 0.1920 |
|
117 |
+
| 0.1003 | 20.03 | 31500 | 0.2300 | 0.1879 |
|
118 |
+
| 0.0861 | 20.34 | 32000 | 0.2215 | 0.1778 |
|
119 |
+
| 0.0845 | 20.66 | 32500 | 0.2321 | 0.1866 |
|
120 |
+
| 0.0858 | 20.98 | 33000 | 0.2311 | 0.1850 |
|
121 |
+
| 0.0785 | 21.3 | 33500 | 0.2341 | 0.1874 |
|
122 |
+
| 0.0786 | 21.61 | 34000 | 0.2322 | 0.1916 |
|
123 |
+
| 0.0793 | 21.93 | 34500 | 0.2358 | 0.1846 |
|
124 |
+
| 0.0772 | 22.25 | 35000 | 0.2234 | 0.1770 |
|
125 |
+
| 0.0786 | 22.57 | 35500 | 0.2180 | 0.1758 |
|
126 |
+
| 0.0747 | 22.89 | 36000 | 0.2269 | 0.1830 |
|
127 |
+
| 0.0734 | 23.2 | 36500 | 0.2320 | 0.1860 |
|
128 |
+
| 0.067 | 23.52 | 37000 | 0.2324 | 0.1797 |
|
129 |
+
| 0.0733 | 23.84 | 37500 | 0.2324 | 0.1772 |
|
130 |
+
| 0.0701 | 24.16 | 38000 | 0.2293 | 0.1737 |
|
131 |
+
| 0.0691 | 24.48 | 38500 | 0.2303 | 0.1750 |
|
132 |
+
| 0.0613 | 24.79 | 39000 | 0.2280 | 0.1725 |
|
133 |
|
134 |
|
135 |
### Framework versions
|
136 |
|
137 |
+
- Transformers 4.24.0
|
138 |
- Pytorch 1.12.1+cu113
|
139 |
- Datasets 2.6.1
|
140 |
- Tokenizers 0.13.1
|