5p33ch3xpr commited on
Commit
5046dec
1 Parent(s): 5da573b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -6
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  model-index:
6
  - name: XLS-R_Finetuned
7
  results: []
@@ -13,6 +15,9 @@ should probably proofread and complete it, then remove this comment. -->
13
  # XLS-R_Finetuned
14
 
15
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
 
 
 
16
 
17
  ## Model description
18
 
@@ -31,25 +36,105 @@ More information needed
31
  ### Training hyperparameters
32
 
33
  The following hyperparameters were used during training:
34
- - learning_rate: 0.0003
35
- - train_batch_size: 4
36
  - eval_batch_size: 8
37
  - seed: 42
38
  - gradient_accumulation_steps: 2
39
- - total_train_batch_size: 8
40
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
  - lr_scheduler_type: linear
42
- - lr_scheduler_warmup_steps: 500
43
- - num_epochs: 1
44
  - mixed_precision_training: Native AMP
45
 
46
  ### Training results
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
 
50
  ### Framework versions
51
 
52
- - Transformers 4.23.1
53
  - Pytorch 1.12.1+cu113
54
  - Datasets 2.6.1
55
  - Tokenizers 0.13.1
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ metrics:
6
+ - wer
7
  model-index:
8
  - name: XLS-R_Finetuned
9
  results: []
 
15
  # XLS-R_Finetuned
16
 
17
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2280
20
+ - Wer: 0.1725
21
 
22
  ## Model description
23
 
 
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
+ - learning_rate: 0.00024
40
+ - train_batch_size: 1
41
  - eval_batch_size: 8
42
  - seed: 42
43
  - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 2
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 800
48
+ - num_epochs: 25
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
55
+ | 6.0094 | 0.32 | 500 | 3.5637 | 1.0 |
56
+ | 3.3935 | 0.64 | 1000 | 2.6589 | 1.0 |
57
+ | 1.5455 | 0.95 | 1500 | 0.7979 | 0.8225 |
58
+ | 0.9065 | 1.27 | 2000 | 0.5392 | 0.6244 |
59
+ | 0.7891 | 1.59 | 2500 | 0.3554 | 0.4551 |
60
+ | 0.7118 | 1.91 | 3000 | 0.3682 | 0.4608 |
61
+ | 0.6061 | 2.23 | 3500 | 0.3384 | 0.4416 |
62
+ | 0.5536 | 2.54 | 4000 | 0.2987 | 0.4042 |
63
+ | 0.547 | 2.86 | 4500 | 0.2892 | 0.3892 |
64
+ | 0.4841 | 3.18 | 5000 | 0.2890 | 0.3690 |
65
+ | 0.4434 | 3.5 | 5500 | 0.2605 | 0.3636 |
66
+ | 0.4542 | 3.81 | 6000 | 0.2932 | 0.3773 |
67
+ | 0.4171 | 4.13 | 6500 | 0.2768 | 0.3550 |
68
+ | 0.3697 | 4.45 | 7000 | 0.2443 | 0.3382 |
69
+ | 0.3776 | 4.77 | 7500 | 0.2572 | 0.3366 |
70
+ | 0.3448 | 5.09 | 8000 | 0.2267 | 0.3006 |
71
+ | 0.3285 | 5.4 | 8500 | 0.2377 | 0.3023 |
72
+ | 0.3165 | 5.72 | 9000 | 0.2344 | 0.2888 |
73
+ | 0.3194 | 6.04 | 9500 | 0.2228 | 0.2699 |
74
+ | 0.2737 | 6.36 | 10000 | 0.2201 | 0.2754 |
75
+ | 0.2986 | 6.68 | 10500 | 0.2413 | 0.2850 |
76
+ | 0.2836 | 6.99 | 11000 | 0.2117 | 0.2629 |
77
+ | 0.2467 | 7.31 | 11500 | 0.2408 | 0.2877 |
78
+ | 0.2577 | 7.63 | 12000 | 0.2134 | 0.2448 |
79
+ | 0.2503 | 7.95 | 12500 | 0.2260 | 0.2600 |
80
+ | 0.2371 | 8.26 | 13000 | 0.2081 | 0.2379 |
81
+ | 0.2303 | 8.58 | 13500 | 0.2322 | 0.2668 |
82
+ | 0.213 | 8.9 | 14000 | 0.2339 | 0.2586 |
83
+ | 0.2029 | 9.22 | 14500 | 0.2300 | 0.2704 |
84
+ | 0.2146 | 9.54 | 15000 | 0.2321 | 0.2533 |
85
+ | 0.2044 | 9.85 | 15500 | 0.2393 | 0.2685 |
86
+ | 0.2008 | 10.17 | 16000 | 0.2193 | 0.2467 |
87
+ | 0.182 | 10.49 | 16500 | 0.2323 | 0.2611 |
88
+ | 0.2 | 10.81 | 17000 | 0.2188 | 0.2537 |
89
+ | 0.1855 | 11.13 | 17500 | 0.2436 | 0.2523 |
90
+ | 0.1745 | 11.44 | 18000 | 0.2351 | 0.2473 |
91
+ | 0.1705 | 11.76 | 18500 | 0.2556 | 0.2663 |
92
+ | 0.1745 | 12.08 | 19000 | 0.2189 | 0.2229 |
93
+ | 0.1641 | 12.4 | 19500 | 0.2192 | 0.2342 |
94
+ | 0.1546 | 12.71 | 20000 | 0.2432 | 0.2228 |
95
+ | 0.1661 | 13.03 | 20500 | 0.2323 | 0.2242 |
96
+ | 0.1436 | 13.35 | 21000 | 0.2554 | 0.2496 |
97
+ | 0.1443 | 13.67 | 21500 | 0.2195 | 0.2026 |
98
+ | 0.151 | 13.99 | 22000 | 0.2400 | 0.2201 |
99
+ | 0.1333 | 14.3 | 22500 | 0.2181 | 0.2235 |
100
+ | 0.137 | 14.62 | 23000 | 0.2400 | 0.2254 |
101
+ | 0.1303 | 14.94 | 23500 | 0.2265 | 0.2088 |
102
+ | 0.1386 | 15.26 | 24000 | 0.2330 | 0.2152 |
103
+ | 0.1325 | 15.58 | 24500 | 0.2328 | 0.2127 |
104
+ | 0.1227 | 15.89 | 25000 | 0.2375 | 0.2077 |
105
+ | 0.1196 | 16.21 | 25500 | 0.2394 | 0.2144 |
106
+ | 0.1197 | 16.53 | 26000 | 0.2591 | 0.2171 |
107
+ | 0.1122 | 16.85 | 26500 | 0.2383 | 0.2066 |
108
+ | 0.1093 | 17.16 | 27000 | 0.2254 | 0.2042 |
109
+ | 0.105 | 17.48 | 27500 | 0.2330 | 0.2008 |
110
+ | 0.0982 | 17.8 | 28000 | 0.2317 | 0.1902 |
111
+ | 0.1072 | 18.12 | 28500 | 0.2332 | 0.1971 |
112
+ | 0.1033 | 18.44 | 29000 | 0.2313 | 0.1923 |
113
+ | 0.0982 | 18.75 | 29500 | 0.2344 | 0.1934 |
114
+ | 0.103 | 19.07 | 30000 | 0.2295 | 0.1902 |
115
+ | 0.0945 | 19.39 | 30500 | 0.2352 | 0.1976 |
116
+ | 0.0892 | 19.71 | 31000 | 0.2414 | 0.1920 |
117
+ | 0.1003 | 20.03 | 31500 | 0.2300 | 0.1879 |
118
+ | 0.0861 | 20.34 | 32000 | 0.2215 | 0.1778 |
119
+ | 0.0845 | 20.66 | 32500 | 0.2321 | 0.1866 |
120
+ | 0.0858 | 20.98 | 33000 | 0.2311 | 0.1850 |
121
+ | 0.0785 | 21.3 | 33500 | 0.2341 | 0.1874 |
122
+ | 0.0786 | 21.61 | 34000 | 0.2322 | 0.1916 |
123
+ | 0.0793 | 21.93 | 34500 | 0.2358 | 0.1846 |
124
+ | 0.0772 | 22.25 | 35000 | 0.2234 | 0.1770 |
125
+ | 0.0786 | 22.57 | 35500 | 0.2180 | 0.1758 |
126
+ | 0.0747 | 22.89 | 36000 | 0.2269 | 0.1830 |
127
+ | 0.0734 | 23.2 | 36500 | 0.2320 | 0.1860 |
128
+ | 0.067 | 23.52 | 37000 | 0.2324 | 0.1797 |
129
+ | 0.0733 | 23.84 | 37500 | 0.2324 | 0.1772 |
130
+ | 0.0701 | 24.16 | 38000 | 0.2293 | 0.1737 |
131
+ | 0.0691 | 24.48 | 38500 | 0.2303 | 0.1750 |
132
+ | 0.0613 | 24.79 | 39000 | 0.2280 | 0.1725 |
133
 
134
 
135
  ### Framework versions
136
 
137
+ - Transformers 4.24.0
138
  - Pytorch 1.12.1+cu113
139
  - Datasets 2.6.1
140
  - Tokenizers 0.13.1