File size: 10,501 Bytes
c39b2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e559c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c39b2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e559c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import math
from typing import ClassVar, List, Optional, Tuple, Union

import torch
from PIL import Image
from transformers import BatchFeature

from .processing_utils import BaseVisualRetrieverProcessor
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from .conversation import get_conv_template
from transformers import BatchFeature, ProcessorMixin

def get_torch_device(device: str = "auto") -> str:
    """
    Returns the device (string) to be used by PyTorch.

    `device` arg defaults to "auto" which will use:
    - "cuda:0" if available
    - else "mps" if available
    - else "cpu".
    """

    if device == "auto":
        if torch.cuda.is_available():
            device = "cuda:0"
        elif torch.backends.mps.is_available():  # for Apple Silicon
            device = "mps"
        else:
            device = "cpu"
    return device
    
class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin):
    """
    Processor for ColInternVL2.
    """
    attributes = [ "tokenizer"]
    image_processor_class = "InternVL2ImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
    
    def __init__(self, tokenizer,  **kwargs):
        self.template = "Hermes-2"
        self.num_image_token = 256        
        # self.max_num = 6
        self.max_num = 4

        if isinstance(tokenizer, str):
            self.tokenizer = AutoTokenizer.from_pretrained(tokenizer, trust_remote_code=True, use_fast=False)
        else:
            self.tokenizer = tokenizer
            
        self.tokenizer.padding_side = 'left'
        self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
        self.IMAGENET_STD = (0.229, 0.224, 0.225)
        self.IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'
        self.IMG_START_TOKEN='<img>'
        self.IMG_END_TOKEN='</img>'
        self.img_context_token_id = self.tokenizer.convert_tokens_to_ids(self.IMG_CONTEXT_TOKEN)
        self.system_message = 'Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.'
        super().__init__(tokenizer)
        
    def build_transform(self, input_size):
        MEAN, STD = self.IMAGENET_MEAN, self.IMAGENET_STD
        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=MEAN, std=STD)
        ])
        return transform
    
    def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
        best_ratio_diff = float('inf')
        best_ratio = (1, 1)
        area = width * height
        for ratio in target_ratios:
            target_aspect_ratio = ratio[0] / ratio[1]
            ratio_diff = abs(aspect_ratio - target_aspect_ratio)
            if ratio_diff < best_ratio_diff:
                best_ratio_diff = ratio_diff
                best_ratio = ratio
            elif ratio_diff == best_ratio_diff:
                if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                    best_ratio = ratio
        return best_ratio
    
    def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
        orig_width, orig_height = image.size
        aspect_ratio = orig_width / orig_height
    
        # calculate the existing image aspect ratio
        target_ratios = set(
            (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
            i * j <= max_num and i * j >= min_num)
        target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
    
        # find the closest aspect ratio to the target
        target_aspect_ratio = self.find_closest_aspect_ratio(
            aspect_ratio, target_ratios, orig_width, orig_height, image_size)
    
        # calculate the target width and height
        target_width = image_size * target_aspect_ratio[0]
        target_height = image_size * target_aspect_ratio[1]
        blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
    
        # resize the image
        resized_img = image.resize((target_width, target_height))
        processed_images = []
        for i in range(blocks):
            box = (
                (i % (target_width // image_size)) * image_size,
                (i // (target_width // image_size)) * image_size,
                ((i % (target_width // image_size)) + 1) * image_size,
                ((i // (target_width // image_size)) + 1) * image_size
            )
            # split the image
            split_img = resized_img.crop(box)
            processed_images.append(split_img)
        assert len(processed_images) == blocks
        if use_thumbnail and len(processed_images) != 1:
            thumbnail_img = image.resize((image_size, image_size))
            processed_images.append(thumbnail_img)
        return processed_images
    
    def load_image(self, image, input_size=448, max_num=12):
        transform = self.build_transform(input_size=input_size)
        images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(image) for image in images]
        pixel_values = torch.stack(pixel_values)
        return pixel_values

    
    def process_images(
        self,
        images: List[Image.Image],
    ) -> BatchFeature:
        """
        Process images for InternVl2.
        """

        pixel_values = [ self.load_image(image, max_num=self.max_num) for image in images]

        num_patches_list = [ pixel_.size(0) for pixel_ in pixel_values]
        image_flags = [ torch.tensor([1] * pixel_.shape[0], dtype=torch.long) for pixel_ in pixel_values ]
        
        queries = []
        for idx, num_patches in enumerate(num_patches_list):
            question = "<image>\nDescribe the image."

            template = get_conv_template(self.template)
            template.system_message = self.system_message
            template.append_message(template.roles[0], question)
            template.append_message(template.roles[1], None)
            query = template.get_prompt()
            image_tokens = self.IMG_START_TOKEN + self.IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + self.IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)
            queries.append(query)

        model_inputs = self.tokenizer(queries, return_tensors='pt', padding=True)
        input_ids = model_inputs['input_ids'] #.to(self.device)
        attention_mask = model_inputs['attention_mask'] #.to(self.device)
        pixel_values = torch.cat(pixel_values)
        
        batch_doc = BatchFeature({
            "pixel_values" : pixel_values,
            "input_ids" : input_ids,
            "attention_mask" : attention_mask,
            # "image_flags" : image_flags
        })
        return batch_doc    
    
    def process_queries(
        self,
        queries: List[str],
        max_length: int = 100,
        suffix: Optional[str] = None,
    ) -> BatchFeature:
        """
        Process queries for InternVl2.
        """

        texts_query: List[str] = []

        for query in queries:
            query = f"Query: {query}"
            template = get_conv_template(self.template)
            template.system_message = self.system_message
            template.append_message(template.roles[0], query)
            template.append_message(template.roles[1], None)
            query = template.get_prompt()
            texts_query.append(query)
            
        model_inputs = self.tokenizer(texts_query, return_tensors='pt', max_length=max_length, padding="longest")
        input_ids = model_inputs['input_ids'] #.to(self.device)
        attention_mask = model_inputs['attention_mask'] #.to(self.device)
        
        batch_query = BatchFeature({
            "pixel_values" : None,
            "input_ids" : input_ids,
            "attention_mask" : attention_mask,
        })
        return batch_query

    def score(
        self,
        qs: List[torch.Tensor],
        ps: List[torch.Tensor],
        device: Optional[Union[str, torch.device]] = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
        """
        return self.score_multi_vector(qs, ps, device=device, **kwargs)

    def get_n_patches(
        self,
        image_size: Tuple[int, int],
        patch_size: int,
    ) -> Tuple[int, int]:
        raise NotImplementedError("This method is not implemented for ColInternVL2.")

    def score_multi_vector(
        self,
        qs: List[torch.Tensor],
        ps: List[torch.Tensor],
        batch_size: int = 128,
        device: Optional[Union[str, torch.device]] = None,
    ) -> torch.Tensor:
        """
        Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
        """
        device = device or get_torch_device("auto")

        if len(qs) == 0:
            raise ValueError("No queries provided")
        if len(ps) == 0:
            raise ValueError("No passages provided")

        scores_list: List[torch.Tensor] = []

        for i in range(0, len(qs), batch_size):
            scores_batch = []
            qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).float().to(
                device
            )
            for j in range(0, len(ps), batch_size):
                ps_batch = torch.nn.utils.rnn.pad_sequence(
                    ps[j : j + batch_size], batch_first=True, padding_value=0
                ).float().to(device)
                scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
            scores_batch = torch.cat(scores_batch, dim=1).cpu()
            scores_list.append(scores_batch)

        scores = torch.cat(scores_list, dim=0)
        assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"

        scores = scores.to(torch.float32)
        return scores