File size: 5,323 Bytes
590aade a901bcb 590aade a901bcb 88b58dd a901bcb 33a156a a901bcb 33a156a ef3dd66 70ebb59 499bb9f a901bcb 33a156a e58c480 a901bcb 33a156a a901bcb ec0805e 848bd8d ec0805e a901bcb ec0805e a901bcb b4c2b36 a901bcb ec0805e f6c9a3e b4c2b36 f6c9a3e a901bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
library_name: transformers
language:
- vi
- en
base_model:
- 5CD-AI/Vintern-1B-v2
datasets:
- vidore/colpali_train_set
- 5CD-AI/Viet-Doc-VQA
- 5CD-AI/Viet-OCR-VQA
- 5CD-AI/Viet-Doc-VQA-II
tags:
- colpali
---
<div align="center">
<img src="colvintern.png" width="400"/>
</div>
## ColVintern-1B-v1 🇻🇳 ❄️ - Colpali version for Vietnamese.
**What's new in ColVintern-1B-v1!**
- We coded and successfully trained the **Colpali pipeline** for **Vintern-1B-v2**. The model supports RAG by extracting embedding vectors for questions and images containing related information.
- This is the first experimental version, trained on the [**Colpali dataset**](https://huggingface.co/datasets/vidore/colpali_train_set) for English and **5%** of the image-based question-answer pairs we have for Vietnamese.
- The model achieves results nearly equivalent to Colpali version 1, with strong support for Vietnamese texts and only 1 billion parameters compared to current 2B-3B Colpali models.
## Colpali Benchmarks
We tested on the [**ViDoRe benchmark**](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) from the Colpali paper. The **TabF** and **Shift** test datasets were not used because they are in French. We plan to expand to multiple languages in the near future.
| | ArxivQ | DocQ | InfoQ | TATQ | AI | Energy | Gov. | Health. | Avg. |
|:------------------------------:|:--------:|:------:|:-------:|:------:|:------:|:--------:|:-------:|:---------:|:--------:|
| **Unstructured** Text only | | | | | | | | | |
| - BM25 | - | 34.1 | - | 44.0 | 90.4 | 78.3 | 78.8 | 82.6 | - |
| - BGE-M3 | - | 28.4 | - | 36.1 | 88.4 | 76.8 | 77.7 | 84.6 | - |
| **Unstructured** + OCR | | | | | | | | | |
| - BM25 | 31.6 | 36.8 | 62.9 | 62.7 | 92.8 | 85.9 | 83.9 | 87.2 | 68.0 |
| - BGE-M3 | 31.4 | 25.7 | 60.1 | 50.5 | 90.2 | 83.6 | 84.9 | 91.1 | 64.7 |
| **Unstructured** + Captioning | | | | | | | | | |
| - BM25 | 40.1 | 38.4 | 70.0 | 61.5 | 88.0 | 84.7 | 82.7 | 89.2 | 69.3 |
| - BGE-M3 | 35.7 | 32.9 | 71.9 | 43.8 | 88.8 | 83.3 | 80.4 | 91.3 | 66.0 |
| **Contrastive VLMs** | | | | | | | | | |
| - Jina-CLIP | 25.4 | 11.9 | 35.5 | 3.3 | 15.2 | 19.7 | 21.4 | 20.8 | 19.2 |
| - Nomic-vision | 17.1 | 10.7 | 30.1 | 2.7 | 12.9 | 10.9 | 11.4 | 15.7 | 13.9 |
| - SigLIP (Vanilla) | 43.2 | 30.3 | 64.1 | 26.2 | 62.5 | 65.7 | 66.1 | 79.1 | 54.7 |
| **Colpali** | | | | | | | | | |
| - SigLIP (Vanilla) | 43.2 | 30.3 | 64.1 | 26.2 | 62.5 | 65.7 | 66.1 | 79.1 | 54.7 |
| - BiSigLIP (+fine-tuning) | 58.5 | 32.9 | 70.5 | 30.5 | 74.3 | 73.7 | 74.2 | 82.3 | 62.1 |
| - BiPali (+LLM) | 56.5 | 30.0 | 67.4 | 33.4 | 71.2 | 61.9 | 73.8 | 73.6 | 58.5 |
| - ColPali (+Late Inter.) | **79.1** | **54.4** | 81.8 | **65.8** | **96.2** | **91.0** | **92.7** | 94.4 | **81.3** |
| **Ours** | | | | | | | | | |
| - ColVintern-1B (+Late Inter.) | 71.6 | 48.3 | **84.6** | 59.6 | 92.9 | 88.7 | 89.4 | **95.2** | 78.8 |
We are expanding the training dataset for upcoming versions, including adding hard negative mining techniques, increasing GPU VRAM, etc., to achieve better results.
## Examples
Input Images:
<div style="display: flex; gap: 20px;">
<img src="ex1.jpg" width="300"/>
<img src="ex2.jpg" width="300"/>
</div>
Input Queries:
```
queries = ["Cảng Hải Phòng thông báo gì ?","Phí giao hàng bao nhiêu ?"]
```
Output Scores:
| Query | Image 1 Score | Image 2 Score |
|------------------------------------|---------------|---------------|
| Cảng Hải Phòng thông báo gì ? | 62.50 | 60.00 |
| Phí giao hàng bao nhiêu ? | 60.75 | 62.75 |
## Quickstart
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer, AutoProcessor
model_name = "5CD-AI/ColVintern-1B-v1"
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).eval().cuda()
```
## Citation
<!-- ```
@misc{doan2024vintern1befficientmultimodallarge,
title={Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese},
author={Khang T. Doan and Bao G. Huynh and Dung T. Hoang and Thuc D. Pham and Nhat H. Pham and Quan T. M. Nguyen and Bang Q. Vo and Suong N. Hoang},
year={2024},
eprint={2408.12480},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2408.12480},
}
``` --> |