{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a657f452b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a657f452c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a657f452cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a657f452d40>", "_build": "<function ActorCriticPolicy._build at 0x7a657f452dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7a657f452e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a657f452ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a657f452f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7a657f453010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a657f4530a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a657f453130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a657f4531c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a65211ee1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732332056772163164, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJppMDuohqs/i6L5PIDg076J+xW8ApKvvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8zcj7hvR+MAWyUTagBjAF0lEdAmlr12icoY3V9lChoBkdAb1yBuGbkO2gHTbQBaAhHQJpdU+TvAoJ1fZQoaAZHQG/oPWQOnVJoB02mAWgIR0CaYMtP557gdX2UKGgGR0BtGPRCx/utaAdNVAFoCEdAmmKkHpr1unV9lChoBkdAcDpyqMm4RWgHTWIBaAhHQJpkjX2/SIB1fZQoaAZHQG4VyrYGt6poB003AWgIR0CaZ187ZFoddX2UKGgGR0BxGVYp2ECeaAdNlAFoCEdAmmmPz4DcM3V9lChoBkdAar6ClJpWWGgHTT4BaAhHQJprRO45Lh91fZQoaAZHQHFmH9m6GxloB00hAmgIR0Cab2M7EHdHdX2UKGgGR0Bw/irvLHMmaAdN4QNoCEdAmndugUUO/nV9lChoBkdAbni05U96kmgHTUYBaAhHQJp55aSs8xN1fZQoaAZHQG7BLgflp49oB02CAWgIR0CafXtl7MPjdX2UKGgGR0BtvTiyY5T7aAdNWQFoCEdAmn9Yv38GcHV9lChoBkdAbc2MERrad2gHTU0BaAhHQJqBLkGRmsh1fZQoaAZHQHCiRNmDlHVoB01AAWgIR0CahA4MWoFWdX2UKGgGR0Bsv8LpiZv2aAdNdgFoCEdAmoYSiZfD13V9lChoBkdAcJNt7KJVKmgHTYQBaAhHQJqIJZMcp9Z1fZQoaAZHQG2dPUBnzxxoB00/AWgIR0Caiwnwob4rdX2UKGgGR0BtTmPDHfdiaAdNaAFoCEdAmo0ExIre7HV9lChoBkdAbFBDUmUnomgHTTABaAhHQJqOo6QvHtF1fZQoaAZHQHGXG5+YtxxoB01vAWgIR0CakcVhCtzTdX2UKGgGR0BwUJuIhyKfaAdNNgFoCEdAmpN1Jtix3XV9lChoBkdAbiJzXBguy2gHTVMBaAhHQJqVW8vmHQB1fZQoaAZHQGu0PK2a2F5oB007AWgIR0CamCwCr92pdX2UKGgGR0BtgKzVtoBaaAdNdQFoCEdAmpo1/YraunV9lChoBkdAcP4QbuMMqmgHTWcBaAhHQJqcEjqv/zd1fZQoaAZHQG+NiIDYAbRoB01nAWgIR0CanywYLsrvdX2UKGgGR0Bu+K3w1BMSaAdNewFoCEdAmqEs4YJmd3V9lChoBkdAb8Uf6oESumgHTT0BaAhHQJqi294/u9h1fZQoaAZHQHBvK0lZ5iVoB019AWgIR0CapvnezlcRdX2UKGgGR0BxKEbgjyFxaAdNTgFoCEdAmqmHqFAVwnV9lChoBkdAbzMbedkJ8mgHTUsBaAhHQJqr2L2pQ1t1fZQoaAZHQHJ99CE6DGtoB01BAWgIR0CarsUsFt9AdX2UKGgGR0BHx0uUUwi8aAdL9mgIR0CasBh86V+rdX2UKGgGR0BwZ8uIyj59aAdNMQFoCEdAmrHDX4CZGHV9lChoBkdAQQBb+tKZlWgHTRMBaAhHQJqzPFm4Ajp1fZQoaAZHQHJk/gzguRNoB01mAWgIR0Catk6CDmKZdX2UKGgGR0BxbZXOnl4kaAdNXgFoCEdAmrgoyGi5/nV9lChoBkdAYdqxk/bCamgHTegDaAhHQJq/CVeKKpF1fZQoaAZHQG0jLk8zQ/poB01BAWgIR0CawML8aXKKdX2UKGgGR0Bx+OEVWS2ZaAdNOQFoCEdAmsOhZha1TnV9lChoBkdAcC4/jbSJCWgHTT0BaAhHQJrFV9Tgl4V1fZQoaAZHQG21VSwW30BoB01WAWgIR0CaxzhDPWxydX2UKGgGR0BwkddyDIzWaAdNPAFoCEdAmsodepn6EnV9lChoBkdAcA/aX8fmtGgHTWgBaAhHQJrMDXTVlPJ1fZQoaAZHQHCYMinpB5ZoB01XAmgIR0Ca0HsjFAE/dX2UKGgGR0BxJmpn6EamaAdNUAFoCEdAmtJTXnQpnnV9lChoBkdAb52vFFUhm2gHTUMBaAhHQJrUfK/20zF1fZQoaAZHQG0ulY+0PYpoB000AWgIR0Ca2BnqVyFPdX2UKGgGR0BweDRoh6jWaAdNUwFoCEdAmtrC0F8ohXV9lChoBkdAbqXImw7kn2gHTU8BaAhHQJrdTkdV/+d1fZQoaAZHQG4FX4bjtHBoB00xAWgIR0Ca3vvGp++edX2UKGgGR0Bvpu9tdiUgaAdNQwFoCEdAmuHqwyIpIHV9lChoBkdAay5d+G47R2gHTT8BaAhHQJrjptm+TNd1fZQoaAZHQHE9Dv/io89oB00uAWgIR0Ca5TrnDBM0dX2UKGgGR0BvpBS9/SYxaAdNWAFoCEdAmuhvjbSJCXV9lChoBkdAbh+Iyj59E2gHTSsBaAhHQJrqIVafSQZ1fZQoaAZHQHCFj2OAAhloB00yAWgIR0Ca696e5Fw2dX2UKGgGR0BwyfVOKwY+aAdNaQFoCEdAmu+8WCVbA3V9lChoBkdAbniq94/u9mgHTVoBaAhHQJrxrRnezld1fZQoaAZHQGv3phfBvaVoB000AWgIR0Ca812jwhGIdX2UKGgGR0BuUt03fhuPaAdNgAFoCEdAmvbPnB+F13V9lChoBkdAbvsYaYNRWWgHTToBaAhHQJr4iwpvxYt1fZQoaAZHQGEaxagVXV9oB03oA2gIR0Ca/xZflZHNdX2UKGgGR0BvGRiAlOXWaAdNVQFoCEdAmwD41DSgG3V9lChoBkdAWTs+bExZdWgHTegDaAhHQJsIsH0K7Zp1fZQoaAZHQG81Z3C9AX5oB03MAWgIR0CbDcELpiZwdX2UKGgGR0BxKclXzUZvaAdNZgFoCEdAmxAjxLCemXV9lChoBkdAXxGxB3RoiGgHTegDaAhHQJsW20rsjVx1fZQoaAZHQHJO9/jKgZloB001AWgIR0CbGIYlY2bYdX2UKGgGR0Bw0PH2h7E6aAdNUAFoCEdAmxuBQJokA3V9lChoBkdAcLNhvze41GgHTUoBaAhHQJsdUBhhH9Z1fZQoaAZHQG2ltmL9/BpoB01YAWgIR0CbHyfEXLvDdX2UKGgGR8As/geii7CjaAdLymgIR0CbIXB2wFC+dX2UKGgGR0BzDsqYqoZRaAdNEwFoCEdAmyLk6DGtIXV9lChoBkdAbq59y925hGgHTS0BaAhHQJskgG1QZXN1fZQoaAZHQHB/ISxqwhZoB01dAWgIR0CbJmcXWOIZdX2UKGgGR0BwEIT238XOaAdNaQFoCEdAmymH7YTTOXV9lChoBkdAcPvnUUfxMGgHTTsBaAhHQJsrNYV6/qR1fZQoaAZHQG7ziBwuM/BoB01xAWgIR0CbLUYfnwG4dX2UKGgGR0BwRjB1s+FDaAdNRwFoCEdAmzAv1lGwzXV9lChoBkdAbFgpyZKFqWgHTWsBaAhHQJsyKbI91U51fZQoaAZHQHHBgMYuTRpoB007AWgIR0CbM9LlV94NdX2UKGgGR0BvqY1tO2y+aAdN5wFoCEdAmzfNG3F1jnV9lChoBkdAcOlssQNCq2gHTVYBaAhHQJs6NbW3BpJ1fZQoaAZHQG0FVZLZi/hoB01FAWgIR0CbPhRe1KGtdX2UKGgGR0BizYAGSpzcaAdN6ANoCEdAm0VcDB/I83V9lChoBkdAb5D8zhxYJWgHTTcBaAhHQJtHFMvh60J1fZQoaAZHQHBgczAN5MVoB002AWgIR0CbSL1nuiN9dX2UKGgGR0By9GOGTLW7aAdNNQFoCEdAm0p0BGQSz3V9lChoBkdAbVMxtYSxq2gHTT4BaAhHQJtNO55JK8N1fZQoaAZHQG4LRjBl+VloB01KAWgIR0CbTv5xzaK2dX2UKGgGR0BwDkefZmI1aAdNVgFoCEdAm1DJDqnm73V9lChoBkdAbLvBnjABUGgHTTsBaAhHQJtTqLuQZGd1fZQoaAZHQHH2TWTX8O1oB007AWgIR0CbVVdNFjNIdX2UKGgGR0BDYOE/SpiraAdL9WgIR0CbVrGsmv4edX2UKGgGR0BwyJ8YyfthaAdNSQFoCEdAm1mo1YQrc3V9lChoBkdAcbeEc81XNmgHTW0BaAhHQJtbqt9x6v91fZQoaAZHQEZHFCLMs6JoB00FAWgIR0CbXRYgq3EydX2UKGgGR0ByT/xoZhrnaAdNHQFoCEdAm16uCwr1/XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |