Edit model card

codebert-code-clone-detector

This model is a fine-tuned version of microsoft/codebert-base on a Code Clone Benchmark dataset. See this github repository for more information. It achieves the following results on the evaluation set:

  • Loss: 0.3452
  • Accuracy: 0.9525
  • Precision: 0.9544
  • Recall: 0.9496
  • F1: 0.9520

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3416 0.49 33 0.1724 0.9417 0.9828 0.9048 0.9421
0.221 0.97 66 0.2768 0.925 1.0 0.8571 0.9231
0.0929 1.46 99 0.2469 0.9583 1.0 0.9206 0.9587
0.1696 1.94 132 0.2142 0.95 0.9524 0.9524 0.9524
0.0818 2.43 165 0.4142 0.925 1.0 0.8571 0.9231
0.0676 2.91 198 0.3539 0.9333 0.9508 0.9206 0.9355

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
63
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for 4luc/codebert-code-clone-detector

Finetuned
(24)
this model