File size: 9,813 Bytes
dca30d0 0f765e4 dca30d0 0f765e4 dca30d0 59c740e 0f765e4 dca30d0 0f765e4 dca30d0 0f765e4 1d84969 0f765e4 1d84969 0f765e4 1d84969 0f765e4 1d84969 0f765e4 1d84969 0f765e4 1d84969 0f765e4 1d84969 0f765e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
---
tags:
- feature-extraction
- image-classification
- timm
- biology
- cancer
- histology
library_name: timm
model-index:
- name: ctranspath
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: Camelyon16[Meta]
type: image-classification
metrics:
- type: accuracy
value: 96.3 ± 2.6
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-BRCA[Hist]
type: image-classification
metrics:
- type: accuracy
value: 95.8 ± 0.5
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-BRCA[HRD]
type: image-classification
metrics:
- type: accuracy
value: 77.1 ± 2.5
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-BRCA[Mol]
type: image-classification
metrics:
- type: accuracy
value: 80.8 ± 1.7
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-BRCA[OS]
type: image-classification
metrics:
- type: accuracy
value: 65.0 ± 6.0
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-CRC[MSI]
type: image-classification
metrics:
- type: accuracy
value: 88.5 ± 2.3
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-COAD[OS]
type: image-classification
metrics:
- type: accuracy
value: 64.3 ± 5.4
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-NSCLC[CType]
type: image-classification
metrics:
- type: accuracy
value: 97.3 ± 0.4
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-LUAD[OS]
type: image-classification
metrics:
- type: accuracy
value: 59.1 ± 4.5
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-LUSC[OS]
type: image-classification
metrics:
- type: accuracy
value: 61.5 ± 2.9
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-OV[HRD]
type: image-classification
metrics:
- type: accuracy
value: 69.5 ± 7.0
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-RCC[CType]
type: image-classification
metrics:
- type: accuracy
value: 98.9 ± 0.2
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-STAD[MSI]
type: image-classification
metrics:
- type: accuracy
value: 83.2 ± 8.1
name: ROC AUC
verified: false
- task:
type: image-classification
name: Image Classification
dataset:
name: TCGA-PAAD[OS]
type: image-classification
metrics:
- type: accuracy
value: 59.0 ± 4.2
name: ROC AUC
verified: false
license: gpl-3.0
pipeline_tag: feature-extraction
inference: false
metrics:
- accuracy
---
# Model card for swin_tiny_patch4_window7_224.CTransPath
A Swin Transformer image classification model. \
Trained on 15M histology patches from PAIP and TCGA.
![](https://ars.els-cdn.com/content/image/1-s2.0-S1361841522002043-ga1_lrg.jpg)
## Model Details
- **Model Type:** Feature backbone
- **Model Stats:**
- Params (M): 27.5
- Image size: 224 x 224 x 3
- **Papers:**
- Transformer-based unsupervised contrastive learning for histopathological image classification: https://www.sciencedirect.com/science/article/abs/pii/S1361841522002043
- **Dataset:** TCGA: https://portal.gdc.cancer.gov/
- **Original:** https://github.com/Xiyue-Wang/TransPath
- **License:** [GPLv3](https://github.com/Xiyue-Wang/TransPath/blob/main/LICENSE.md)
## Model Usage
### Custom Patch Embed Layer Definition
```python
from timm.layers.helpers import to_2tuple
import timm
import torch.nn as nn
class ConvStem(nn.Module):
"""Custom Patch Embed Layer.
Adapted from https://github.com/Xiyue-Wang/TransPath/blob/main/ctran.py#L6-L44
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=768, norm_layer=None, **kwargs):
super().__init__()
# Check input constraints
assert patch_size == 4, "Patch size must be 4"
assert embed_dim % 8 == 0, "Embedding dimension must be a multiple of 8"
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
# Create stem network
stem = []
input_dim, output_dim = 3, embed_dim // 8
for l in range(2):
stem.append(nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=2, padding=1, bias=False))
stem.append(nn.BatchNorm2d(output_dim))
stem.append(nn.ReLU(inplace=True))
input_dim = output_dim
output_dim *= 2
stem.append(nn.Conv2d(input_dim, embed_dim, kernel_size=1))
self.proj = nn.Sequential(*stem)
# Apply normalization layer (if provided)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
# Check input image size
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
x = x.permute(0, 2, 3, 1) # BCHW -> BHWC
x = self.norm(x)
return x
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
# get example histology image
img = Image.open(
urlopen(
"https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
)
)
# load model from the hub
model = timm.create_model(
model_name="hf-hub:1aurent/swin_tiny_patch4_window7_224.CTransPath",
embed_layer=ConvStem, # defined above
pretrained=True,
).eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
data = transforms(img).unsqueeze(0) # input is (batch_size, num_channels, img_size, img_size) shaped tensor
output = model(data) # output is (batch_size, num_features) shaped tensor
```
## Citation
```bibtex
@article{WANG2022102559,
title = {Transformer-based unsupervised contrastive learning for histopathological image classification},
journal = {Medical Image Analysis},
volume = {81},
pages = {102559},
year = {2022},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2022.102559},
url = {https://www.sciencedirect.com/science/article/pii/S1361841522002043},
author = {Xiyue Wang and Sen Yang and Jun Zhang and Minghui Wang and Jing Zhang and Wei Yang and Junzhou Huang and Xiao Han},
keywords = {Histopathology, Transformer, Self-supervised learning, Feature extraction},
abstract = {A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local–global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-based visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.}
}
``` |