Image Classification
timm
Safetensors
1aurent commited on
Commit
8f9dd67
·
1 Parent(s): c43c2b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -2
README.md CHANGED
@@ -3,6 +3,77 @@ tags:
3
  - image-classification
4
  - timm
5
  library_name: timm
6
- license: apache-2.0
 
 
 
 
 
 
 
7
  ---
8
- # Model card for resnet50.lunit_MoCoV2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  - image-classification
4
  - timm
5
  library_name: timm
6
+ license: other
7
+ license_name: lunit-non-commercial
8
+ license_link: https://github.com/lunit-io/benchmark-ssl-pathology/blob/main/LICENSE
9
+ datasets:
10
+ - 1aurent/BACH
11
+ - 1aurent/NCT-CRC-HE
12
+ - 1aurent/PatchCamelyon
13
+ pipeline_tag: image-classification
14
  ---
15
+
16
+ # Model card for resnet50.lunit_mocov2
17
+
18
+ A ResNet50 image classification model. \
19
+ Trained on 33M histology patches from various pathology datasets.
20
+
21
+ ![](https://github.com/lunit-io/benchmark-ssl-pathology/raw/main/assets/ssl_teaser.png)
22
+
23
+ ## Model Details
24
+
25
+ - **Model Type:** Feature backbone
26
+ - **SSL Method:** MoCo v2
27
+ - **Model Stats:**
28
+ - Params (M): 23.6
29
+ - Image sizes (max): 1024 × 768 x 3
30
+ - **Papers:**
31
+ - Benchmarking Self-Supervised Learning on Diverse Pathology Datasets: https://arxiv.org/abs/2212.04690
32
+ - **Datasets:**
33
+ - BACH
34
+ - CRC
35
+ - MHIST
36
+ - PatchCamelyon
37
+ - CoNSeP
38
+ - **Original:** https://github.com/lunit-io/benchmark-ssl-pathology
39
+ - **License:** [lunit-non-commercial](https://github.com/lunit-io/benchmark-ssl-pathology/blob/main/LICENSE)
40
+
41
+ ## Model Usage
42
+
43
+ ### Image Embeddings
44
+ ```python
45
+ from urllib.request import urlopen
46
+ from PIL import Image
47
+ import timm
48
+
49
+ # get example histology image
50
+ img = Image.open(
51
+ urlopen(
52
+ "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
53
+ )
54
+ )
55
+
56
+ # load model from the hub
57
+ model = timm.create_model(
58
+ model_name="hf-hub:1aurent/resnet50.lunit_mocov2",
59
+ pretrained=True,
60
+ ).eval()
61
+
62
+ # get model specific transforms (normalization, resize)
63
+ data_config = timm.data.resolve_model_data_config(model)
64
+ transforms = timm.data.create_transform(**data_config, is_training=False)
65
+
66
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
67
+ ```
68
+
69
+ ## Citation
70
+ ```bibtex
71
+ @inproceedings{kang2022benchmarking,
72
+ author = {Kang, Mingu and Song, Heon and Park, Seonwook and Yoo, Donggeun and Pereira, Sérgio},
73
+ title = {Benchmarking Self-Supervised Learning on Diverse Pathology Datasets},
74
+ booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
75
+ month = {June},
76
+ year = {2023},
77
+ pages = {3344-3354}
78
+ }
79
+ ```