Hannes Kuchelmeister
commited on
Commit
·
d170477
1
Parent(s):
ba9c868
added in_memory loading to reduce disk reads and increase speed
Browse files
notebooks/1.0-hfk-datamodules-exploration.ipynb
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
},
|
10 |
{
|
11 |
"cell_type": "code",
|
12 |
-
"execution_count":
|
13 |
"metadata": {},
|
14 |
"outputs": [],
|
15 |
"source": [
|
@@ -18,7 +18,7 @@
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
@@ -27,235 +27,18 @@
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
-
"execution_count":
|
31 |
"metadata": {},
|
32 |
-
"outputs": [
|
33 |
-
{
|
34 |
-
"data": {
|
35 |
-
"text/html": [
|
36 |
-
"<div>\n",
|
37 |
-
"<style scoped>\n",
|
38 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
39 |
-
" vertical-align: middle;\n",
|
40 |
-
" }\n",
|
41 |
-
"\n",
|
42 |
-
" .dataframe tbody tr th {\n",
|
43 |
-
" vertical-align: top;\n",
|
44 |
-
" }\n",
|
45 |
-
"\n",
|
46 |
-
" .dataframe thead th {\n",
|
47 |
-
" text-align: right;\n",
|
48 |
-
" }\n",
|
49 |
-
"</style>\n",
|
50 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
51 |
-
" <thead>\n",
|
52 |
-
" <tr style=\"text-align: right;\">\n",
|
53 |
-
" <th></th>\n",
|
54 |
-
" <th>Unnamed: 0</th>\n",
|
55 |
-
" <th>image_path</th>\n",
|
56 |
-
" <th>original_filename</th>\n",
|
57 |
-
" <th>study_id</th>\n",
|
58 |
-
" <th>scan_uuid</th>\n",
|
59 |
-
" <th>focus_value</th>\n",
|
60 |
-
" <th>stack_id</th>\n",
|
61 |
-
" <th>obj_name</th>\n",
|
62 |
-
" </tr>\n",
|
63 |
-
" </thead>\n",
|
64 |
-
" <tbody>\n",
|
65 |
-
" <tr>\n",
|
66 |
-
" <th>0</th>\n",
|
67 |
-
" <td>0</td>\n",
|
68 |
-
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631...</td>\n",
|
69 |
-
" <td>I01631_X013_Y012_Z5107.jpg</td>\n",
|
70 |
-
" <td>31</td>\n",
|
71 |
-
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
72 |
-
" <td>-2.82953</td>\n",
|
73 |
-
" <td>1658220</td>\n",
|
74 |
-
" <td>133</td>\n",
|
75 |
-
" </tr>\n",
|
76 |
-
" <tr>\n",
|
77 |
-
" <th>1</th>\n",
|
78 |
-
" <td>1</td>\n",
|
79 |
-
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01632...</td>\n",
|
80 |
-
" <td>I01632_X013_Y012_Z5175.jpg</td>\n",
|
81 |
-
" <td>31</td>\n",
|
82 |
-
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
83 |
-
" <td>-2.70408</td>\n",
|
84 |
-
" <td>1658220</td>\n",
|
85 |
-
" <td>133</td>\n",
|
86 |
-
" </tr>\n",
|
87 |
-
" <tr>\n",
|
88 |
-
" <th>2</th>\n",
|
89 |
-
" <td>2</td>\n",
|
90 |
-
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01633...</td>\n",
|
91 |
-
" <td>I01633_X013_Y012_Z5722.jpg</td>\n",
|
92 |
-
" <td>31</td>\n",
|
93 |
-
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
94 |
-
" <td>-2.69918</td>\n",
|
95 |
-
" <td>1658220</td>\n",
|
96 |
-
" <td>133</td>\n",
|
97 |
-
" </tr>\n",
|
98 |
-
" <tr>\n",
|
99 |
-
" <th>3</th>\n",
|
100 |
-
" <td>3</td>\n",
|
101 |
-
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01634...</td>\n",
|
102 |
-
" <td>I01634_X013_Y012_Z5244.jpg</td>\n",
|
103 |
-
" <td>31</td>\n",
|
104 |
-
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
105 |
-
" <td>-2.50266</td>\n",
|
106 |
-
" <td>1658220</td>\n",
|
107 |
-
" <td>133</td>\n",
|
108 |
-
" </tr>\n",
|
109 |
-
" <tr>\n",
|
110 |
-
" <th>4</th>\n",
|
111 |
-
" <td>4</td>\n",
|
112 |
-
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01635...</td>\n",
|
113 |
-
" <td>I01635_X013_Y012_Z5654.jpg</td>\n",
|
114 |
-
" <td>31</td>\n",
|
115 |
-
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
116 |
-
" <td>-2.36450</td>\n",
|
117 |
-
" <td>1658220</td>\n",
|
118 |
-
" <td>133</td>\n",
|
119 |
-
" </tr>\n",
|
120 |
-
" <tr>\n",
|
121 |
-
" <th>...</th>\n",
|
122 |
-
" <td>...</td>\n",
|
123 |
-
" <td>...</td>\n",
|
124 |
-
" <td>...</td>\n",
|
125 |
-
" <td>...</td>\n",
|
126 |
-
" <td>...</td>\n",
|
127 |
-
" <td>...</td>\n",
|
128 |
-
" <td>...</td>\n",
|
129 |
-
" <td>...</td>\n",
|
130 |
-
" </tr>\n",
|
131 |
-
" <tr>\n",
|
132 |
-
" <th>565</th>\n",
|
133 |
-
" <td>565</td>\n",
|
134 |
-
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01406...</td>\n",
|
135 |
-
" <td>I01406_X016_Y009_Z5361.jpg</td>\n",
|
136 |
-
" <td>31</td>\n",
|
137 |
-
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
138 |
-
" <td>-3.41147</td>\n",
|
139 |
-
" <td>1674918</td>\n",
|
140 |
-
" <td>217</td>\n",
|
141 |
-
" </tr>\n",
|
142 |
-
" <tr>\n",
|
143 |
-
" <th>566</th>\n",
|
144 |
-
" <td>566</td>\n",
|
145 |
-
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01407...</td>\n",
|
146 |
-
" <td>I01407_X016_Y009_Z5087.jpg</td>\n",
|
147 |
-
" <td>31</td>\n",
|
148 |
-
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
149 |
-
" <td>-3.05424</td>\n",
|
150 |
-
" <td>1674918</td>\n",
|
151 |
-
" <td>217</td>\n",
|
152 |
-
" </tr>\n",
|
153 |
-
" <tr>\n",
|
154 |
-
" <th>567</th>\n",
|
155 |
-
" <td>567</td>\n",
|
156 |
-
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01408...</td>\n",
|
157 |
-
" <td>I01408_X016_Y009_Z5292.jpg</td>\n",
|
158 |
-
" <td>31</td>\n",
|
159 |
-
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
160 |
-
" <td>-1.48608</td>\n",
|
161 |
-
" <td>1674918</td>\n",
|
162 |
-
" <td>217</td>\n",
|
163 |
-
" </tr>\n",
|
164 |
-
" <tr>\n",
|
165 |
-
" <th>568</th>\n",
|
166 |
-
" <td>568</td>\n",
|
167 |
-
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01409...</td>\n",
|
168 |
-
" <td>I01409_X016_Y009_Z5156.jpg</td>\n",
|
169 |
-
" <td>31</td>\n",
|
170 |
-
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
171 |
-
" <td>-0.52804</td>\n",
|
172 |
-
" <td>1674918</td>\n",
|
173 |
-
" <td>217</td>\n",
|
174 |
-
" </tr>\n",
|
175 |
-
" <tr>\n",
|
176 |
-
" <th>569</th>\n",
|
177 |
-
" <td>569</td>\n",
|
178 |
-
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01410...</td>\n",
|
179 |
-
" <td>I01410_X016_Y009_Z5224.jpg</td>\n",
|
180 |
-
" <td>31</td>\n",
|
181 |
-
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
182 |
-
" <td>0.00000</td>\n",
|
183 |
-
" <td>1674918</td>\n",
|
184 |
-
" <td>217</td>\n",
|
185 |
-
" </tr>\n",
|
186 |
-
" </tbody>\n",
|
187 |
-
"</table>\n",
|
188 |
-
"<p>570 rows × 8 columns</p>\n",
|
189 |
-
"</div>"
|
190 |
-
],
|
191 |
-
"text/plain": [
|
192 |
-
" Unnamed: 0 image_path \\\n",
|
193 |
-
"0 0 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631... \n",
|
194 |
-
"1 1 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01632... \n",
|
195 |
-
"2 2 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01633... \n",
|
196 |
-
"3 3 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01634... \n",
|
197 |
-
"4 4 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01635... \n",
|
198 |
-
".. ... ... \n",
|
199 |
-
"565 565 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01406... \n",
|
200 |
-
"566 566 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01407... \n",
|
201 |
-
"567 567 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01408... \n",
|
202 |
-
"568 568 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01409... \n",
|
203 |
-
"569 569 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01410... \n",
|
204 |
-
"\n",
|
205 |
-
" original_filename study_id \\\n",
|
206 |
-
"0 I01631_X013_Y012_Z5107.jpg 31 \n",
|
207 |
-
"1 I01632_X013_Y012_Z5175.jpg 31 \n",
|
208 |
-
"2 I01633_X013_Y012_Z5722.jpg 31 \n",
|
209 |
-
"3 I01634_X013_Y012_Z5244.jpg 31 \n",
|
210 |
-
"4 I01635_X013_Y012_Z5654.jpg 31 \n",
|
211 |
-
".. ... ... \n",
|
212 |
-
"565 I01406_X016_Y009_Z5361.jpg 31 \n",
|
213 |
-
"566 I01407_X016_Y009_Z5087.jpg 31 \n",
|
214 |
-
"567 I01408_X016_Y009_Z5292.jpg 31 \n",
|
215 |
-
"568 I01409_X016_Y009_Z5156.jpg 31 \n",
|
216 |
-
"569 I01410_X016_Y009_Z5224.jpg 31 \n",
|
217 |
-
"\n",
|
218 |
-
" scan_uuid focus_value stack_id obj_name \n",
|
219 |
-
"0 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.82953 1658220 133 \n",
|
220 |
-
"1 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.70408 1658220 133 \n",
|
221 |
-
"2 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.69918 1658220 133 \n",
|
222 |
-
"3 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.50266 1658220 133 \n",
|
223 |
-
"4 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.36450 1658220 133 \n",
|
224 |
-
".. ... ... ... ... \n",
|
225 |
-
"565 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -3.41147 1674918 217 \n",
|
226 |
-
"566 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -3.05424 1674918 217 \n",
|
227 |
-
"567 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -1.48608 1674918 217 \n",
|
228 |
-
"568 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -0.52804 1674918 217 \n",
|
229 |
-
"569 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 0.00000 1674918 217 \n",
|
230 |
-
"\n",
|
231 |
-
"[570 rows x 8 columns]"
|
232 |
-
]
|
233 |
-
},
|
234 |
-
"execution_count": 3,
|
235 |
-
"metadata": {},
|
236 |
-
"output_type": "execute_result"
|
237 |
-
}
|
238 |
-
],
|
239 |
"source": [
|
240 |
"metadata"
|
241 |
]
|
242 |
},
|
243 |
{
|
244 |
"cell_type": "code",
|
245 |
-
"execution_count":
|
246 |
"metadata": {},
|
247 |
-
"outputs": [
|
248 |
-
{
|
249 |
-
"data": {
|
250 |
-
"text/plain": [
|
251 |
-
"'31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631_X013_Y012_Z5107_600_375.jpg'"
|
252 |
-
]
|
253 |
-
},
|
254 |
-
"execution_count": 4,
|
255 |
-
"metadata": {},
|
256 |
-
"output_type": "execute_result"
|
257 |
-
}
|
258 |
-
],
|
259 |
"source": [
|
260 |
"idx = 0\n",
|
261 |
"# File Path\n",
|
@@ -264,20 +47,9 @@
|
|
264 |
},
|
265 |
{
|
266 |
"cell_type": "code",
|
267 |
-
"execution_count":
|
268 |
"metadata": {},
|
269 |
-
"outputs": [
|
270 |
-
{
|
271 |
-
"data": {
|
272 |
-
"text/plain": [
|
273 |
-
"-2.82953"
|
274 |
-
]
|
275 |
-
},
|
276 |
-
"execution_count": 5,
|
277 |
-
"metadata": {},
|
278 |
-
"output_type": "execute_result"
|
279 |
-
}
|
280 |
-
],
|
281 |
"source": [
|
282 |
"# Focus Value\n",
|
283 |
"metadata.iloc[idx, 5]"
|
@@ -292,76 +64,9 @@
|
|
292 |
},
|
293 |
{
|
294 |
"cell_type": "code",
|
295 |
-
"execution_count":
|
296 |
"metadata": {},
|
297 |
-
"outputs": [
|
298 |
-
{
|
299 |
-
"name": "stdout",
|
300 |
-
"output_type": "stream",
|
301 |
-
"text": [
|
302 |
-
"570\n"
|
303 |
-
]
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"data": {
|
307 |
-
"text/plain": [
|
308 |
-
"{'image': array([[[172, 173, 159],\n",
|
309 |
-
" [166, 167, 153],\n",
|
310 |
-
" [171, 173, 160],\n",
|
311 |
-
" ...,\n",
|
312 |
-
" [199, 202, 173],\n",
|
313 |
-
" [199, 202, 173],\n",
|
314 |
-
" [200, 201, 170]],\n",
|
315 |
-
" \n",
|
316 |
-
" [[167, 169, 155],\n",
|
317 |
-
" [164, 166, 152],\n",
|
318 |
-
" [171, 175, 160],\n",
|
319 |
-
" ...,\n",
|
320 |
-
" [194, 197, 168],\n",
|
321 |
-
" [195, 198, 169],\n",
|
322 |
-
" [199, 200, 169]],\n",
|
323 |
-
" \n",
|
324 |
-
" [[146, 153, 135],\n",
|
325 |
-
" [149, 156, 138],\n",
|
326 |
-
" [163, 172, 153],\n",
|
327 |
-
" ...,\n",
|
328 |
-
" [189, 192, 163],\n",
|
329 |
-
" [191, 194, 165],\n",
|
330 |
-
" [197, 198, 167]],\n",
|
331 |
-
" \n",
|
332 |
-
" ...,\n",
|
333 |
-
" \n",
|
334 |
-
" [[ 57, 62, 68],\n",
|
335 |
-
" [ 41, 46, 52],\n",
|
336 |
-
" [ 24, 31, 39],\n",
|
337 |
-
" ...,\n",
|
338 |
-
" [198, 189, 180],\n",
|
339 |
-
" [188, 179, 170],\n",
|
340 |
-
" [180, 171, 164]],\n",
|
341 |
-
" \n",
|
342 |
-
" [[ 46, 51, 57],\n",
|
343 |
-
" [ 34, 39, 45],\n",
|
344 |
-
" [ 21, 28, 36],\n",
|
345 |
-
" ...,\n",
|
346 |
-
" [208, 200, 189],\n",
|
347 |
-
" [197, 190, 180],\n",
|
348 |
-
" [188, 181, 173]],\n",
|
349 |
-
" \n",
|
350 |
-
" [[ 31, 39, 42],\n",
|
351 |
-
" [ 23, 31, 34],\n",
|
352 |
-
" [ 18, 25, 31],\n",
|
353 |
-
" ...,\n",
|
354 |
-
" [215, 209, 197],\n",
|
355 |
-
" [205, 199, 187],\n",
|
356 |
-
" [197, 190, 180]]], dtype=uint8),\n",
|
357 |
-
" 'focus_value': 0.0}"
|
358 |
-
]
|
359 |
-
},
|
360 |
-
"execution_count": 6,
|
361 |
-
"metadata": {},
|
362 |
-
"output_type": "execute_result"
|
363 |
-
}
|
364 |
-
],
|
365 |
"source": [
|
366 |
"from importlib.machinery import SourceFileLoader\n",
|
367 |
"\n",
|
@@ -370,18 +75,15 @@
|
|
370 |
"\n",
|
371 |
"ds = FocusDataSet(\"../data/focus/metadata.csv\", \"../data/focus/\")\n",
|
372 |
"\n",
|
373 |
-
"counter = 0\n",
|
374 |
"for d in ds:\n",
|
375 |
-
"
|
376 |
-
"\n",
|
377 |
-
"print(counter)\n",
|
378 |
"\n",
|
379 |
"d"
|
380 |
]
|
381 |
},
|
382 |
{
|
383 |
"cell_type": "code",
|
384 |
-
"execution_count":
|
385 |
"metadata": {},
|
386 |
"outputs": [],
|
387 |
"source": [
|
@@ -393,20 +95,9 @@
|
|
393 |
},
|
394 |
{
|
395 |
"cell_type": "code",
|
396 |
-
"execution_count":
|
397 |
"metadata": {},
|
398 |
-
"outputs": [
|
399 |
-
{
|
400 |
-
"data": {
|
401 |
-
"text/plain": [
|
402 |
-
"64"
|
403 |
-
]
|
404 |
-
},
|
405 |
-
"execution_count": 8,
|
406 |
-
"metadata": {},
|
407 |
-
"output_type": "execute_result"
|
408 |
-
}
|
409 |
-
],
|
410 |
"source": [
|
411 |
"for data in datamodule.test_dataloader():\n",
|
412 |
" break\n",
|
@@ -416,40 +107,9 @@
|
|
416 |
},
|
417 |
{
|
418 |
"cell_type": "code",
|
419 |
-
"execution_count":
|
420 |
"metadata": {},
|
421 |
-
"outputs": [
|
422 |
-
{
|
423 |
-
"name": "stderr",
|
424 |
-
"output_type": "stream",
|
425 |
-
"text": [
|
426 |
-
"/home/hku/.local/lib/python3.8/site-packages/torch/nn/modules/loss.py:96: UserWarning: Using a target size (torch.Size([64])) that is different to the input size (torch.Size([64, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.\n",
|
427 |
-
" return F.l1_loss(input, target, reduction=self.reduction)\n"
|
428 |
-
]
|
429 |
-
},
|
430 |
-
{
|
431 |
-
"data": {
|
432 |
-
"text/plain": [
|
433 |
-
"(tensor(2.5787, grad_fn=<L1LossBackward0>),\n",
|
434 |
-
" tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
435 |
-
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
436 |
-
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n",
|
437 |
-
" tensor([-1.2805, -0.0943, -2.3645, 0.8542, -0.8047, -6.0020, 0.0000, -4.3352,\n",
|
438 |
-
" -1.8066, -2.7189, -6.4697, -3.2557, -4.2778, -5.0264, -3.4891, 0.0000,\n",
|
439 |
-
" -1.7181, -2.7314, 0.3324, -0.0943, -0.8991, 0.0000, -4.4178, 1.9723,\n",
|
440 |
-
" -3.0026, -5.5685, 3.8374, 3.8625, -0.4125, -4.1936, -1.5781, -1.6393,\n",
|
441 |
-
" -2.9583, -5.4933, -1.7807, -3.3135, -5.3423, -0.7978, -5.3971, -4.9412,\n",
|
442 |
-
" 0.0000, -4.4128, -5.7744, -5.2755, -1.0996, -5.7482, 0.0000, -0.1737,\n",
|
443 |
-
" -3.5851, -6.1429, -6.3642, -3.9653, -0.2081, -0.9539, -0.4159, -0.5388,\n",
|
444 |
-
" -1.3643, -4.4441, -1.5161, 0.6395, -5.4710, -2.6482, 0.0000, -2.6257],\n",
|
445 |
-
" dtype=torch.float64))"
|
446 |
-
]
|
447 |
-
},
|
448 |
-
"execution_count": 9,
|
449 |
-
"metadata": {},
|
450 |
-
"output_type": "execute_result"
|
451 |
-
}
|
452 |
-
],
|
453 |
"source": [
|
454 |
"import types\n",
|
455 |
"import importlib.machinery\n",
|
@@ -460,6 +120,60 @@
|
|
460 |
"\n",
|
461 |
"model.step(data)"
|
462 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
}
|
464 |
],
|
465 |
"metadata": {
|
|
|
9 |
},
|
10 |
{
|
11 |
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
"metadata": {},
|
14 |
"outputs": [],
|
15 |
"source": [
|
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
|
|
27 |
},
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
+
"execution_count": null,
|
31 |
"metadata": {},
|
32 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"source": [
|
34 |
"metadata"
|
35 |
]
|
36 |
},
|
37 |
{
|
38 |
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
"metadata": {},
|
41 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"source": [
|
43 |
"idx = 0\n",
|
44 |
"# File Path\n",
|
|
|
47 |
},
|
48 |
{
|
49 |
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
"metadata": {},
|
52 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
"source": [
|
54 |
"# Focus Value\n",
|
55 |
"metadata.iloc[idx, 5]"
|
|
|
64 |
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
+
"execution_count": null,
|
68 |
"metadata": {},
|
69 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
"source": [
|
71 |
"from importlib.machinery import SourceFileLoader\n",
|
72 |
"\n",
|
|
|
75 |
"\n",
|
76 |
"ds = FocusDataSet(\"../data/focus/metadata.csv\", \"../data/focus/\")\n",
|
77 |
"\n",
|
|
|
78 |
"for d in ds:\n",
|
79 |
+
" break\n",
|
|
|
|
|
80 |
"\n",
|
81 |
"d"
|
82 |
]
|
83 |
},
|
84 |
{
|
85 |
"cell_type": "code",
|
86 |
+
"execution_count": null,
|
87 |
"metadata": {},
|
88 |
"outputs": [],
|
89 |
"source": [
|
|
|
95 |
},
|
96 |
{
|
97 |
"cell_type": "code",
|
98 |
+
"execution_count": null,
|
99 |
"metadata": {},
|
100 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
"source": [
|
102 |
"for data in datamodule.test_dataloader():\n",
|
103 |
" break\n",
|
|
|
107 |
},
|
108 |
{
|
109 |
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
"metadata": {},
|
112 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
"source": [
|
114 |
"import types\n",
|
115 |
"import importlib.machinery\n",
|
|
|
120 |
"\n",
|
121 |
"model.step(data)"
|
122 |
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "markdown",
|
126 |
+
"metadata": {},
|
127 |
+
"source": [
|
128 |
+
"## Benchmark in-memory and from disk"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": null,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"import time\n",
|
138 |
+
"\n",
|
139 |
+
"iterations = 10"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": null,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [],
|
147 |
+
"source": [
|
148 |
+
"datamodule = FocusDataModule(data_dir=\"../data/focus150\", csv_file=\"../data/focus150/metadata.csv\")\n",
|
149 |
+
"datamodule.setup()\n",
|
150 |
+
"\n",
|
151 |
+
"\n",
|
152 |
+
"start = time.perf_counter()\n",
|
153 |
+
"counter = 0\n",
|
154 |
+
"for i in range(iterations):\n",
|
155 |
+
" for data in datamodule.train_dataloader():\n",
|
156 |
+
" counter += 1\n",
|
157 |
+
"\n",
|
158 |
+
"print(time.perf_counter() - start)"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": null,
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"datamodule = FocusDataModule(data_dir=\"../data/focus150\", csv_file=\"../data/focus150/metadata.csv\", in_memory=False)\n",
|
168 |
+
"datamodule.setup()\n",
|
169 |
+
"\n",
|
170 |
+
"start = time.perf_counter()\n",
|
171 |
+
"counter = 0\n",
|
172 |
+
"for i in range(iterations):\n",
|
173 |
+
" for data in datamodule.train_dataloader():\n",
|
174 |
+
" counter += 1\n",
|
175 |
+
"print(time.perf_counter() - start)"
|
176 |
+
]
|
177 |
}
|
178 |
],
|
179 |
"metadata": {
|
src/datamodules/focus_datamodule.py
CHANGED
@@ -14,7 +14,7 @@ from torchvision.transforms import transforms
|
|
14 |
class FocusDataSet(Dataset):
|
15 |
"""Dataset for z-stacked images of neglected tropical diseaeses."""
|
16 |
|
17 |
-
def __init__(self, csv_file, root_dir, transform=None):
|
18 |
"""Initialize focus satck dataset.
|
19 |
|
20 |
Args:
|
@@ -24,11 +24,23 @@ class FocusDataSet(Dataset):
|
|
24 |
on a sample.
|
25 |
"""
|
26 |
self.metadata = pd.read_csv(csv_file)
|
|
|
27 |
self.col_index_path = self.metadata.columns.get_loc("image_path")
|
28 |
self.col_index_focus = self.metadata.columns.get_loc("focus_value")
|
29 |
self.root_dir = root_dir
|
30 |
self.transform = transform
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def __len__(self) -> int:
|
33 |
"""Get the length of the dataset.
|
34 |
|
@@ -49,17 +61,19 @@ class FocusDataSet(Dataset):
|
|
49 |
if torch.is_tensor(idx):
|
50 |
idx = idx.tolist()
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
focus_value = torch.from_numpy(
|
57 |
np.asarray(self.metadata.iloc[idx, self.col_index_focus])
|
58 |
).float()
|
59 |
-
sample = {"image": image, "focus_value": focus_value}
|
60 |
|
61 |
-
|
62 |
-
sample["image"] = self.transform(sample["image"])
|
63 |
|
64 |
return sample
|
65 |
|
@@ -77,6 +91,7 @@ class FocusDataModule(LightningDataModule):
|
|
77 |
batch_size: int = 64,
|
78 |
num_workers: int = 0,
|
79 |
pin_memory: bool = False,
|
|
|
80 |
):
|
81 |
super().__init__()
|
82 |
|
@@ -91,6 +106,7 @@ class FocusDataModule(LightningDataModule):
|
|
91 |
self.data_train: Optional[Dataset] = None
|
92 |
self.data_val: Optional[Dataset] = None
|
93 |
self.data_test: Optional[Dataset] = None
|
|
|
94 |
|
95 |
def prepare_data(self):
|
96 |
"""This method is not implemented as of yet.
|
@@ -108,7 +124,10 @@ class FocusDataModule(LightningDataModule):
|
|
108 |
# load datasets only if they're not loaded already
|
109 |
if not self.data_train and not self.data_val and not self.data_test:
|
110 |
dataset = FocusDataSet(
|
111 |
-
self.hparams.csv_file,
|
|
|
|
|
|
|
112 |
)
|
113 |
train_length = int(
|
114 |
len(dataset) * self.hparams.train_val_test_split_percentage[0]
|
|
|
14 |
class FocusDataSet(Dataset):
|
15 |
"""Dataset for z-stacked images of neglected tropical diseaeses."""
|
16 |
|
17 |
+
def __init__(self, csv_file, root_dir, transform=None, in_memory=True):
|
18 |
"""Initialize focus satck dataset.
|
19 |
|
20 |
Args:
|
|
|
24 |
on a sample.
|
25 |
"""
|
26 |
self.metadata = pd.read_csv(csv_file)
|
27 |
+
self.in_memory = in_memory
|
28 |
self.col_index_path = self.metadata.columns.get_loc("image_path")
|
29 |
self.col_index_focus = self.metadata.columns.get_loc("focus_value")
|
30 |
self.root_dir = root_dir
|
31 |
self.transform = transform
|
32 |
|
33 |
+
self.images = []
|
34 |
+
if self.in_memory:
|
35 |
+
self.images = np.array(
|
36 |
+
list(map(self._load_img, self.metadata["image_path"].tolist()))
|
37 |
+
)
|
38 |
+
|
39 |
+
def _load_img(self, img_path):
|
40 |
+
path = os.path.join(self.root_dir, img_path)
|
41 |
+
img = io.imread(path)
|
42 |
+
return img
|
43 |
+
|
44 |
def __len__(self) -> int:
|
45 |
"""Get the length of the dataset.
|
46 |
|
|
|
61 |
if torch.is_tensor(idx):
|
62 |
idx = idx.tolist()
|
63 |
|
64 |
+
if self.in_memory:
|
65 |
+
image = self.images[idx]
|
66 |
+
else:
|
67 |
+
image = self._load_img(self.metadata.iloc[idx, self.col_index_path])
|
68 |
+
|
69 |
+
if self.transform:
|
70 |
+
image = self.transform(image)
|
71 |
+
|
72 |
focus_value = torch.from_numpy(
|
73 |
np.asarray(self.metadata.iloc[idx, self.col_index_focus])
|
74 |
).float()
|
|
|
75 |
|
76 |
+
sample = {"image": image, "focus_value": focus_value}
|
|
|
77 |
|
78 |
return sample
|
79 |
|
|
|
91 |
batch_size: int = 64,
|
92 |
num_workers: int = 0,
|
93 |
pin_memory: bool = False,
|
94 |
+
in_memory: bool = True,
|
95 |
):
|
96 |
super().__init__()
|
97 |
|
|
|
106 |
self.data_train: Optional[Dataset] = None
|
107 |
self.data_val: Optional[Dataset] = None
|
108 |
self.data_test: Optional[Dataset] = None
|
109 |
+
self.in_memory = in_memory
|
110 |
|
111 |
def prepare_data(self):
|
112 |
"""This method is not implemented as of yet.
|
|
|
124 |
# load datasets only if they're not loaded already
|
125 |
if not self.data_train and not self.data_val and not self.data_test:
|
126 |
dataset = FocusDataSet(
|
127 |
+
self.hparams.csv_file,
|
128 |
+
self.hparams.data_dir,
|
129 |
+
transform=self.transforms,
|
130 |
+
in_memory=self.in_memory,
|
131 |
)
|
132 |
train_length = int(
|
133 |
len(dataset) * self.hparams.train_val_test_split_percentage[0]
|