Hannes Kuchelmeister commited on
Commit
a58327a
·
1 Parent(s): f938da8

add missing changes from original repository

Browse files
configs/callbacks/default.yaml CHANGED
@@ -1,7 +1,7 @@
1
  model_checkpoint:
2
  _target_: pytorch_lightning.callbacks.ModelCheckpoint
3
- monitor: "val/acc" # name of the logged metric which determines when model is improving
4
- mode: "max" # "max" means higher metric value is better, can be also "min"
5
  save_top_k: 1 # save k best models (determined by above metric)
6
  save_last: True # additionaly always save model from last epoch
7
  verbose: False
@@ -11,8 +11,8 @@ model_checkpoint:
11
 
12
  early_stopping:
13
  _target_: pytorch_lightning.callbacks.EarlyStopping
14
- monitor: "val/acc" # name of the logged metric which determines when model is improving
15
- mode: "max" # "max" means higher metric value is better, can be also "min"
16
  patience: 100 # how many validation epochs of not improving until training stops
17
  min_delta: 0 # minimum change in the monitored metric needed to qualify as an improvement
18
 
 
1
  model_checkpoint:
2
  _target_: pytorch_lightning.callbacks.ModelCheckpoint
3
+ monitor: "val/mae" # name of the logged metric which determines when model is improving
4
+ mode: "min" # "max" means higher metric value is better, can be also "min"
5
  save_top_k: 1 # save k best models (determined by above metric)
6
  save_last: True # additionaly always save model from last epoch
7
  verbose: False
 
11
 
12
  early_stopping:
13
  _target_: pytorch_lightning.callbacks.EarlyStopping
14
+ monitor: "val/mae" # name of the logged metric which determines when model is improving
15
+ mode: "min" # "max" means higher metric value is better, can be also "min"
16
  patience: 100 # how many validation epochs of not improving until training stops
17
  min_delta: 0 # minimum change in the monitored metric needed to qualify as an improvement
18
 
configs/datamodule/focus150.yaml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ _target_: src.datamodules.focus_datamodule.FocusDataModule
2
+
3
+ data_dir: ${data_dir}/focus150 # data_dir is specified in config.yaml
4
+ csv_file: ${data_dir}/focus150/metadata.csv
5
+ batch_size: 64
6
+ train_val_test_split_percentage: [0.7, 0.15, 0.15]
7
+ num_workers: 0
8
+ pin_memory: False
configs/experiment/focus_example.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # to execute this experiment run:
4
+ # python train.py experiment=example
5
+
6
+ defaults:
7
+ - override /datamodule: focus.yaml
8
+ - override /model: focus.yaml
9
+ - override /callbacks: default.yaml
10
+ - override /logger: tensorboard
11
+ - override /trainer: default.yaml
12
+
13
+ # all parameters below will be merged with parameters from default configurations set above
14
+ # this allows you to overwrite only specified parameters
15
+
16
+ # name of the run determines folder name in logs
17
+ name: "focus_example"
18
+ seed: 12345
19
+
20
+ trainer:
21
+ min_epochs: 1
22
+ max_epochs: 100
23
+
24
+ model:
25
+ lin1_size: 128
26
+ lin2_size: 256
27
+ lin3_size: 64
28
+
29
+ datamodule:
30
+ batch_size: 64
31
+
configs/hparams_search/focus150_optuna.yaml ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # example hyperparameter optimization of some experiment with Optuna:
4
+ # python train.py -m hparams_search=mnist_optuna experiment=example
5
+
6
+ defaults:
7
+ - override /datamodule: focus150.yaml
8
+ - override /model: focus150.yaml
9
+ - override /hydra/sweeper: optuna
10
+
11
+ # choose metric which will be optimized by Optuna
12
+ # make sure this is the correct name of some metric logged in lightning module!
13
+ optimized_metric: "val/mae_best"
14
+
15
+ name: "focus150_optuna"
16
+
17
+ # here we define Optuna hyperparameter search
18
+ # it optimizes for value returned from function with @hydra.main decorator
19
+ # docs: https://hydra.cc/docs/next/plugins/optuna_sweeper
20
+ hydra:
21
+ sweeper:
22
+ _target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper
23
+
24
+ # storage URL to persist optimization results
25
+ # for example, you can use SQLite if you set 'sqlite:///example.db'
26
+ storage: null
27
+
28
+ # name of the study to persist optimization results
29
+ study_name: focus150_hyperparameter_search
30
+
31
+ # number of parallel workers
32
+ n_jobs: 1
33
+
34
+ # 'minimize' or 'maximize' the objective
35
+ direction: minimize
36
+
37
+ # total number of runs that will be executed
38
+ n_trials: 25
39
+
40
+ # choose Optuna hyperparameter sampler
41
+ # docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html
42
+ sampler:
43
+ _target_: optuna.samplers.TPESampler
44
+ seed: 12345
45
+ n_startup_trials: 10 # number of random sampling runs before optimization starts
46
+
47
+ # define range of hyperparameters
48
+ search_space:
49
+ datamodule.batch_size:
50
+ type: categorical
51
+ choices: [32, 64, 128]
52
+ model.lr:
53
+ type: float
54
+ low: 0.0001
55
+ high: 0.2
56
+ model.lin1_size:
57
+ type: categorical
58
+ choices: [32, 64, 128, 256, 512, 1024, 2048]
59
+ model.lin2_size:
60
+ type: categorical
61
+ choices: [32, 64, 128, 256, 512, 1024, 2048]
62
+ model.lin3_size:
63
+ type: categorical
64
+ choices: [32, 64, 128, 256, 512, 1024, 2048]
configs/hparams_search/focus_optuna.yaml ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # example hyperparameter optimization of some experiment with Optuna:
4
+ # python train.py -m hparams_search=mnist_optuna experiment=example
5
+
6
+ defaults:
7
+ - override /hydra/sweeper: optuna
8
+
9
+ # choose metric which will be optimized by Optuna
10
+ # make sure this is the correct name of some metric logged in lightning module!
11
+ optimized_metric: "val/mae_best"
12
+
13
+ name: "focus_optuna"
14
+
15
+ # here we define Optuna hyperparameter search
16
+ # it optimizes for value returned from function with @hydra.main decorator
17
+ # docs: https://hydra.cc/docs/next/plugins/optuna_sweeper
18
+ hydra:
19
+ sweeper:
20
+ _target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper
21
+
22
+ # storage URL to persist optimization results
23
+ # for example, you can use SQLite if you set 'sqlite:///example.db'
24
+ storage: null
25
+
26
+ # name of the study to persist optimization results
27
+ study_name: focus_hyperparameter_search
28
+
29
+ # number of parallel workers
30
+ n_jobs: 1
31
+
32
+ # 'minimize' or 'maximize' the objective
33
+ direction: minimize
34
+
35
+ # total number of runs that will be executed
36
+ n_trials: 25
37
+
38
+ # choose Optuna hyperparameter sampler
39
+ # docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html
40
+ sampler:
41
+ _target_: optuna.samplers.TPESampler
42
+ seed: 12345
43
+ n_startup_trials: 10 # number of random sampling runs before optimization starts
44
+
45
+ # define range of hyperparameters
46
+ search_space:
47
+ datamodule.batch_size:
48
+ type: categorical
49
+ choices: [32, 64, 128]
50
+ model.lr:
51
+ type: float
52
+ low: 0.0001
53
+ high: 0.2
54
+ model.lin1_size:
55
+ type: categorical
56
+ choices: [32, 64, 128, 256, 512, 1024, 2048]
57
+ model.lin2_size:
58
+ type: categorical
59
+ choices: [32, 64, 128, 256, 512, 1024, 2048]
60
+ model.lin3_size:
61
+ type: categorical
62
+ choices: [32, 64, 128, 256, 512, 1024, 2048]
configs/model/focus150.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ _target_: src.models.focus_module.FocusLitModule
2
+
3
+ input_size: 67500
4
+ lin1_size: 256
5
+ lin2_size: 256
6
+ lin3_size: 256
7
+ output_size: 1
8
+ lr: 0.001
9
+ weight_decay: 0.0005
configs/train.yaml CHANGED
@@ -3,10 +3,10 @@
3
  # specify here default training configuration
4
  defaults:
5
  - _self_
6
- - datamodule: focus.yaml
7
- - model: focus.yaml
8
  - callbacks: default.yaml
9
- - logger: null # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
10
  - trainer: long.yaml
11
  - log_dir: default.yaml
12
 
 
3
  # specify here default training configuration
4
  defaults:
5
  - _self_
6
+ - datamodule: focus150.yaml
7
+ - model: focus150.yaml
8
  - callbacks: default.yaml
9
+ - logger: tensorboard # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
10
  - trainer: long.yaml
11
  - log_dir: default.yaml
12
 
configs/trainer/default.yaml CHANGED
@@ -1,6 +1,6 @@
1
  _target_: pytorch_lightning.Trainer
2
 
3
- gpus: 0
4
 
5
  min_epochs: 1
6
  max_epochs: 10
 
1
  _target_: pytorch_lightning.Trainer
2
 
3
+ gpus: 1
4
 
5
  min_epochs: 1
6
  max_epochs: 10
configs/trainer/long.yaml CHANGED
@@ -1,6 +1,6 @@
1
  _target_: pytorch_lightning.Trainer
2
 
3
- gpus: 0
4
 
5
  min_epochs: 1
6
  max_epochs: 100
 
1
  _target_: pytorch_lightning.Trainer
2
 
3
+ gpus: 1
4
 
5
  min_epochs: 1
6
  max_epochs: 100
src/datamodules/focus_datamodule.py CHANGED
@@ -22,6 +22,8 @@ class FocusDataSet(Dataset):
22
  on a sample.
23
  """
24
  self.metadata = pd.read_csv(csv_file)
 
 
25
  self.root_dir = root_dir
26
  self.transform = transform
27
 
@@ -45,9 +47,11 @@ class FocusDataSet(Dataset):
45
  if torch.is_tensor(idx):
46
  idx = idx.tolist()
47
 
48
- img_name = os.path.join(self.root_dir, self.metadata.iloc[idx, 1])
 
 
49
  image = io.imread(img_name)
50
- focus_value = self.metadata.iloc[idx, 5]
51
  sample = {"image": image, "focus_value": focus_value}
52
 
53
  if self.transform:
 
22
  on a sample.
23
  """
24
  self.metadata = pd.read_csv(csv_file)
25
+ self.col_index_path = self.metadata.columns.get_loc("image_path")
26
+ self.col_index_focus = self.metadata.columns.get_loc("focus_value")
27
  self.root_dir = root_dir
28
  self.transform = transform
29
 
 
47
  if torch.is_tensor(idx):
48
  idx = idx.tolist()
49
 
50
+ img_name = os.path.join(
51
+ self.root_dir, self.metadata.iloc[idx, self.col_index_path]
52
+ )
53
  image = io.imread(img_name)
54
+ focus_value = self.metadata.iloc[idx, self.col_index_focus]
55
  sample = {"image": image, "focus_value": focus_value}
56
 
57
  if self.transform:
src/models/focus_module.py CHANGED
@@ -134,6 +134,7 @@ class FocusLitModule(LightningModule):
134
  return {"loss": loss, "preds": preds, "targets": targets}
135
 
136
  def test_epoch_end(self, outputs: List[Any]):
 
137
  pass
138
 
139
  def on_epoch_end(self):
 
134
  return {"loss": loss, "preds": preds, "targets": targets}
135
 
136
  def test_epoch_end(self, outputs: List[Any]):
137
+ print(outputs)
138
  pass
139
 
140
  def on_epoch_end(self):