Hannes Kuchelmeister
commited on
Commit
•
6693f22
1
Parent(s):
e447dcf
add hyperparameter search for convolutional model
Browse files
configs/hparams_search/focusConvMSE_150_hyperparameter_search.yaml
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# example hyperparameter optimization of some experiment with Optuna:
|
4 |
+
# python train.py -m hparams_search=mnist_optuna experiment=example
|
5 |
+
|
6 |
+
defaults:
|
7 |
+
- override /datamodule: focus150.yaml
|
8 |
+
- override /model: focusConv_150.yaml
|
9 |
+
- override /hydra/sweeper: optuna
|
10 |
+
|
11 |
+
# choose metric which will be optimized by Optuna
|
12 |
+
# make sure this is the correct name of some metric logged in lightning module!
|
13 |
+
optimized_metric: "val/mae_best"
|
14 |
+
|
15 |
+
name: "focusConvMSE_150_hyperparameter_search"
|
16 |
+
|
17 |
+
# here we define Optuna hyperparameter search
|
18 |
+
# it optimizes for value returned from function with @hydra.main decorator
|
19 |
+
# docs: https://hydra.cc/docs/next/plugins/optuna_sweeper
|
20 |
+
hydra:
|
21 |
+
sweeper:
|
22 |
+
_target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper
|
23 |
+
|
24 |
+
# storage URL to persist optimization results
|
25 |
+
# for example, you can use SQLite if you set 'sqlite:///example.db'
|
26 |
+
storage: null
|
27 |
+
|
28 |
+
# name of the study to persist optimization results
|
29 |
+
study_name: focusConvMSE_150_hyperparameter_search
|
30 |
+
|
31 |
+
# number of parallel workers
|
32 |
+
n_jobs: 1
|
33 |
+
|
34 |
+
# 'minimize' or 'maximize' the objective
|
35 |
+
direction: minimize
|
36 |
+
|
37 |
+
# total number of runs that will be executed
|
38 |
+
n_trials: 20
|
39 |
+
|
40 |
+
# choose Optuna hyperparameter sampler
|
41 |
+
# docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html
|
42 |
+
sampler:
|
43 |
+
_target_: optuna.samplers.TPESampler
|
44 |
+
seed: 12345
|
45 |
+
n_startup_trials: 10 # number of random sampling runs before optimization starts
|
46 |
+
|
47 |
+
# define range of hyperparameters
|
48 |
+
search_space:
|
49 |
+
datamodule.batch_size:
|
50 |
+
type: categorical
|
51 |
+
choices: [64, 128]
|
52 |
+
model.lr:
|
53 |
+
type: float
|
54 |
+
low: 0.0001
|
55 |
+
high: 0.2
|
56 |
+
model.pool_size:
|
57 |
+
type: categorical
|
58 |
+
choices: [1, 2, 3]
|
59 |
+
model.conv1_size:
|
60 |
+
type: categorical
|
61 |
+
choices: [3, 5, 7, 9]
|
62 |
+
model.conv1_channels:
|
63 |
+
type: categorical
|
64 |
+
choices: [1, 3, 6, 9]
|
65 |
+
model.conv2_size:
|
66 |
+
type: categorical
|
67 |
+
choices: [3, 5, 7, 9]
|
68 |
+
model.conv2_channels:
|
69 |
+
type: categorical
|
70 |
+
choices: [1, 3, 6, 9]
|
71 |
+
model.lin1_size:
|
72 |
+
type: categorical
|
73 |
+
choices: [16, 32, 64, 96, 128]
|
74 |
+
model.lin2_size:
|
75 |
+
type: categorical
|
76 |
+
choices: [16, 32, 64, 96, 128]
|