Hannes Kuchelmeister
cleanup to make ready as submodule
c7be723
raw
history blame contribute delete
870 Bytes
from torch import nn
class SimpleDenseNet(nn.Module):
def __init__(self, hparams: dict):
super().__init__()
self.model = nn.Sequential(
nn.Linear(hparams["input_size"], hparams["lin1_size"]),
nn.BatchNorm1d(hparams["lin1_size"]),
nn.ReLU(),
nn.Linear(hparams["lin1_size"], hparams["lin2_size"]),
nn.BatchNorm1d(hparams["lin2_size"]),
nn.ReLU(),
nn.Linear(hparams["lin2_size"], hparams["lin3_size"]),
nn.BatchNorm1d(hparams["lin3_size"]),
nn.ReLU(),
nn.Linear(hparams["lin3_size"], hparams["output_size"]),
)
def forward(self, x):
batch_size, channels, width, height = x.size()
# (batch, 1, width, height) -> (batch, 1*width*height)
x = x.view(batch_size, -1)
return self.model(x)