Hannes Kuchelmeister
Add code so loss function uses torch.Size([x,1]) instead of torch.Size([x])
ba9c868
from typing import Any, List | |
import torch | |
from torch import nn | |
from pytorch_lightning import LightningModule | |
from torchmetrics import MaxMetric, MeanAbsoluteError, MinMetric | |
from torchmetrics.classification.accuracy import Accuracy | |
class SimpleDenseNet(nn.Module): | |
def __init__(self, hparams: dict): | |
super().__init__() | |
self.model = nn.Sequential( | |
nn.Linear(hparams["input_size"], hparams["lin1_size"]), | |
nn.BatchNorm1d(hparams["lin1_size"]), | |
nn.ReLU(), | |
nn.Linear(hparams["lin1_size"], hparams["lin2_size"]), | |
nn.BatchNorm1d(hparams["lin2_size"]), | |
nn.ReLU(), | |
nn.Linear(hparams["lin2_size"], hparams["lin3_size"]), | |
nn.BatchNorm1d(hparams["lin3_size"]), | |
nn.ReLU(), | |
nn.Linear(hparams["lin3_size"], hparams["output_size"]), | |
) | |
def forward(self, x): | |
batch_size, channels, width, height = x.size() | |
# (batch, 1, width, height) -> (batch, 1*width*height) | |
x = x.view(batch_size, -1) | |
return self.model(x) | |
class FocusLitModule(LightningModule): | |
""" | |
Example of LightningModule for MNIST classification. | |
A LightningModule organizes your PyTorch code into 5 sections: | |
- Computations (init). | |
- Train loop (training_step) | |
- Validation loop (validation_step) | |
- Test loop (test_step) | |
- Optimizers (configure_optimizers) | |
Read the docs: | |
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html | |
""" | |
def __init__( | |
self, | |
input_size: int = 75 * 75 * 3, | |
lin1_size: int = 256, | |
lin2_size: int = 256, | |
lin3_size: int = 256, | |
output_size: int = 1, | |
lr: float = 0.001, | |
weight_decay: float = 0.0005, | |
): | |
super().__init__() | |
# this line allows to access init params with 'self.hparams' attribute | |
# it also ensures init params will be stored in ckpt | |
self.save_hyperparameters(logger=False) | |
self.model = SimpleDenseNet(hparams=self.hparams) | |
# loss function | |
self.criterion = torch.nn.L1Loss() | |
# use separate metric instance for train, val and test step | |
# to ensure a proper reduction over the epoch | |
self.train_mae = MeanAbsoluteError() | |
self.val_mae = MeanAbsoluteError() | |
self.test_mae = MeanAbsoluteError() | |
# for logging best so far validation accuracy | |
self.val_mae_best = MinMetric() | |
def forward(self, x: torch.Tensor): | |
return self.model(x) | |
def step(self, batch: Any): | |
x = batch["image"] | |
y = batch["focus_value"] | |
logits = self.forward(x) | |
loss = self.criterion(logits, y.unsqueeze(1)) | |
preds = torch.squeeze(logits) | |
return loss, preds, y | |
def training_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.step(batch) | |
# log train metrics | |
mae = self.train_mae(preds, targets) | |
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False) | |
self.log("train/mae", mae, on_step=False, on_epoch=True, prog_bar=True) | |
# we can return here dict with any tensors | |
# and then read it in some callback or in `training_epoch_end()`` below | |
# remember to always return loss from `training_step()` or else backpropagation will fail! | |
return {"loss": loss, "preds": preds, "targets": targets} | |
def training_epoch_end(self, outputs: List[Any]): | |
# `outputs` is a list of dicts returned from `training_step()` | |
pass | |
def validation_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.step(batch) | |
# log val metrics | |
mae = self.val_mae(preds, targets) | |
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False) | |
self.log("val/mae", mae, on_step=False, on_epoch=True, prog_bar=True) | |
return {"loss": loss, "preds": preds, "targets": targets} | |
def validation_epoch_end(self, outputs: List[Any]): | |
mae = self.val_mae.compute() # get val accuracy from current epoch | |
self.val_mae_best.update(mae) | |
self.log( | |
"val/mae_best", self.val_mae_best.compute(), on_epoch=True, prog_bar=True | |
) | |
def test_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.step(batch) | |
# log test metrics | |
mae = self.test_mae(preds, targets) | |
self.log("test/loss", loss, on_step=False, on_epoch=True) | |
self.log("test/mae", mae, on_step=False, on_epoch=True) | |
return {"loss": loss, "preds": preds, "targets": targets} | |
def test_epoch_end(self, outputs: List[Any]): | |
print(outputs) | |
pass | |
def on_epoch_end(self): | |
# reset metrics at the end of every epoch | |
self.train_mae.reset() | |
self.test_mae.reset() | |
self.val_mae.reset() | |
def configure_optimizers(self): | |
"""Choose what optimizers and learning-rate schedulers. | |
Normally you'd need one. But in the case of GANs or similar you might have multiple. | |
See examples here: | |
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers | |
""" | |
return torch.optim.Adam( | |
params=self.parameters(), | |
lr=self.hparams.lr, | |
weight_decay=self.hparams.weight_decay, | |
) | |
class FocusMSELitModule(LightningModule): | |
""" | |
Example of LightningModule for MNIST classification. | |
A LightningModule organizes your PyTorch code into 5 sections: | |
- Computations (init). | |
- Train loop (training_step) | |
- Validation loop (validation_step) | |
- Test loop (test_step) | |
- Optimizers (configure_optimizers) | |
Read the docs: | |
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html | |
""" | |
def __init__( | |
self, | |
input_size: int = 75 * 75 * 3, | |
lin1_size: int = 256, | |
lin2_size: int = 256, | |
lin3_size: int = 256, | |
output_size: int = 1, | |
lr: float = 0.001, | |
weight_decay: float = 0.0005, | |
): | |
super().__init__() | |
# this line allows to access init params with 'self.hparams' attribute | |
# it also ensures init params will be stored in ckpt | |
self.save_hyperparameters(logger=False) | |
self.model = SimpleDenseNet(hparams=self.hparams) | |
# loss function | |
self.criterion = torch.nn.MSELoss() | |
# use separate metric instance for train, val and test step | |
# to ensure a proper reduction over the epoch | |
self.train_mae = MeanAbsoluteError() | |
self.val_mae = MeanAbsoluteError() | |
self.test_mae = MeanAbsoluteError() | |
# for logging best so far validation accuracy | |
self.val_mae_best = MinMetric() | |
def forward(self, x: torch.Tensor): | |
return self.model(x) | |
def step(self, batch: Any): | |
x = batch["image"] | |
y = batch["focus_value"] | |
logits = self.forward(x) | |
loss = self.criterion(logits, y.unsqueeze(1)) | |
preds = torch.squeeze(logits) | |
return loss, preds, y | |
def training_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.step(batch) | |
# log train metrics | |
mae = self.train_mae(preds, targets) | |
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False) | |
self.log("train/mae", mae, on_step=False, on_epoch=True, prog_bar=True) | |
# we can return here dict with any tensors | |
# and then read it in some callback or in `training_epoch_end()`` below | |
# remember to always return loss from `training_step()` or else backpropagation will fail! | |
return {"loss": loss, "preds": preds, "targets": targets} | |
def training_epoch_end(self, outputs: List[Any]): | |
# `outputs` is a list of dicts returned from `training_step()` | |
pass | |
def validation_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.step(batch) | |
# log val metrics | |
mae = self.val_mae(preds, targets) | |
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False) | |
self.log("val/mae", mae, on_step=False, on_epoch=True, prog_bar=True) | |
return {"loss": loss, "preds": preds, "targets": targets} | |
def validation_epoch_end(self, outputs: List[Any]): | |
mae = self.val_mae.compute() # get val accuracy from current epoch | |
self.val_mae_best.update(mae) | |
self.log( | |
"val/mae_best", self.val_mae_best.compute(), on_epoch=True, prog_bar=True | |
) | |
def test_step(self, batch: Any, batch_idx: int): | |
loss, preds, targets = self.step(batch) | |
# log test metrics | |
mae = self.test_mae(preds, targets) | |
self.log("test/loss", loss, on_step=False, on_epoch=True) | |
self.log("test/mae", mae, on_step=False, on_epoch=True) | |
return {"loss": loss, "preds": preds, "targets": targets} | |
def test_epoch_end(self, outputs: List[Any]): | |
print(outputs) | |
pass | |
def on_epoch_end(self): | |
# reset metrics at the end of every epoch | |
self.train_mae.reset() | |
self.test_mae.reset() | |
self.val_mae.reset() | |
def configure_optimizers(self): | |
"""Choose what optimizers and learning-rate schedulers. | |
Normally you'd need one. But in the case of GANs or similar you might have multiple. | |
See examples here: | |
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers | |
""" | |
return torch.optim.Adam( | |
params=self.parameters(), | |
lr=self.hparams.lr, | |
weight_decay=self.hparams.weight_decay, | |
) | |