from torch import nn | |
class SimpleDenseNet(nn.Module): | |
def __init__(self, hparams: dict): | |
super().__init__() | |
self.model = nn.Sequential( | |
nn.Linear(hparams["input_size"], hparams["lin1_size"]), | |
nn.BatchNorm1d(hparams["lin1_size"]), | |
nn.ReLU(), | |
nn.Linear(hparams["lin1_size"], hparams["lin2_size"]), | |
nn.BatchNorm1d(hparams["lin2_size"]), | |
nn.ReLU(), | |
nn.Linear(hparams["lin2_size"], hparams["lin3_size"]), | |
nn.BatchNorm1d(hparams["lin3_size"]), | |
nn.ReLU(), | |
nn.Linear(hparams["lin3_size"], hparams["output_size"]), | |
) | |
def forward(self, x): | |
batch_size, channels, width, height = x.size() | |
# (batch, 1, width, height) -> (batch, 1*width*height) | |
x = x.view(batch_size, -1) | |
return self.model(x) | |