master_thesis_models / src /models /mnist_module.py
Hannes Kuchelmeister
cleanup to make ready as submodule
c7be723
raw
history blame
4.5 kB
from typing import Any, List
import torch
from pytorch_lightning import LightningModule
from torchmetrics import MaxMetric
from torchmetrics.classification.accuracy import Accuracy
from src.models.components.simple_dense_net import SimpleDenseNet
class MNISTLitModule(LightningModule):
"""
Example of LightningModule for MNIST classification.
A LightningModule organizes your PyTorch code into 5 sections:
- Computations (init).
- Train loop (training_step)
- Validation loop (validation_step)
- Test loop (test_step)
- Optimizers (configure_optimizers)
Read the docs:
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
"""
def __init__(
self,
input_size: int = 784,
lin1_size: int = 256,
lin2_size: int = 256,
lin3_size: int = 256,
output_size: int = 10,
lr: float = 0.001,
weight_decay: float = 0.0005,
):
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# it also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
self.model = SimpleDenseNet(hparams=self.hparams)
# loss function
self.criterion = torch.nn.CrossEntropyLoss()
# use separate metric instance for train, val and test step
# to ensure a proper reduction over the epoch
self.train_acc = Accuracy()
self.val_acc = Accuracy()
self.test_acc = Accuracy()
# for logging best so far validation accuracy
self.val_acc_best = MaxMetric()
def forward(self, x: torch.Tensor):
return self.model(x)
def step(self, batch: Any):
x, y = batch
logits = self.forward(x)
loss = self.criterion(logits, y)
preds = torch.argmax(logits, dim=1)
return loss, preds, y
def training_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log train metrics
acc = self.train_acc(preds, targets)
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("train/acc", acc, on_step=False, on_epoch=True, prog_bar=True)
# we can return here dict with any tensors
# and then read it in some callback or in `training_epoch_end()`` below
# remember to always return loss from `training_step()` or else backpropagation will fail!
return {"loss": loss, "preds": preds, "targets": targets}
def training_epoch_end(self, outputs: List[Any]):
# `outputs` is a list of dicts returned from `training_step()`
pass
def validation_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log val metrics
acc = self.val_acc(preds, targets)
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("val/acc", acc, on_step=False, on_epoch=True, prog_bar=True)
return {"loss": loss, "preds": preds, "targets": targets}
def validation_epoch_end(self, outputs: List[Any]):
acc = self.val_acc.compute() # get val accuracy from current epoch
self.val_acc_best.update(acc)
self.log("val/acc_best", self.val_acc_best.compute(), on_epoch=True, prog_bar=True)
def test_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log test metrics
acc = self.test_acc(preds, targets)
self.log("test/loss", loss, on_step=False, on_epoch=True)
self.log("test/acc", acc, on_step=False, on_epoch=True)
return {"loss": loss, "preds": preds, "targets": targets}
def test_epoch_end(self, outputs: List[Any]):
pass
def on_epoch_end(self):
# reset metrics at the end of every epoch
self.train_acc.reset()
self.test_acc.reset()
self.val_acc.reset()
def configure_optimizers(self):
"""Choose what optimizers and learning-rate schedulers to use in your optimization.
Normally you'd need one. But in the case of GANs or similar you might have multiple.
See examples here:
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
"""
return torch.optim.Adam(
params=self.parameters(), lr=self.hparams.lr, weight_decay=self.hparams.weight_decay
)