master_thesis_models / src /datamodules /focus_datamodule.py
Hannes Kuchelmeister
cleanup to make ready as submodule
c7be723
raw
history blame
4.86 kB
import os
from typing import Optional, Tuple
import pandas as pd
from skimage import io
import torch
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision.transforms import transforms
class FocusDataSet(Dataset):
"""Dataset for z-stacked images of neglected tropical diseaeses."""
def __init__(self, csv_file, root_dir, transform=None):
"""Initialize focus satck dataset.
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.metadata = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self) -> int:
"""Get the length of the dataset.
Returns:
int: the length
"""
return len(self.metadata)
def __getitem__(self, idx):
"""Get one items from the dataset.
Args:
idx (int) The index of the sample that is to be retrieved
Returns:
Item/Items which is a dictionary containing "image" and "focus_value"
"""
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = os.path.join(self.root_dir, self.metadata.iloc[idx, 1])
image = io.imread(img_name)
focus_value = self.metadata.iloc[idx, 5]
sample = {"image": image, "focus_value": focus_value}
if self.transform:
sample["image"] = self.transform(sample["image"])
return sample
class FocusDataModule(LightningDataModule):
"""
LightningDataModule for FocusStack dataset.
"""
def __init__(
self,
data_dir: str = "data/",
csv_file: str = "data/metadata.csv",
train_val_test_split_percentage: Tuple[int, int, int] = (0.75, 0.15, 0.15),
batch_size: int = 64,
num_workers: int = 0,
pin_memory: bool = False,
):
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
self.save_hyperparameters(logger=False)
# data transformations
self.transforms = transforms.Compose(
[transforms.ToTensor(), transforms.ConvertImageDtype(torch.float)]
)
self.data_train: Optional[Dataset] = None
self.data_val: Optional[Dataset] = None
self.data_test: Optional[Dataset] = None
def prepare_data(self):
"""This method is not implemented as of yet.
Download data if needed. This method is called only from a single GPU.
Do not use it to assign state (self.x = y).
"""
pass
def setup(self, stage: Optional[str] = None):
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by lightning twice for `trainer.fit()` and `trainer.test()`, so be careful if you do a random split!
The `stage` can be used to differentiate whether it's called before trainer.fit()` or `trainer.test()`."""
# load datasets only if they're not loaded already
if not self.data_train and not self.data_val and not self.data_test:
dataset = FocusDataSet(
self.hparams.csv_file, self.hparams.data_dir, transform=self.transforms
)
train_length = int(
len(dataset) * self.hparams.train_val_test_split_percentage[0]
)
val_length = int(
len(dataset) * self.hparams.train_val_test_split_percentage[1]
)
test_length = len(dataset) - val_length - train_length
self.data_train, self.data_val, self.data_test = random_split(
dataset=dataset,
lengths=(train_length, test_length, val_length),
generator=torch.Generator().manual_seed(42),
)
def train_dataloader(self):
return DataLoader(
dataset=self.data_train,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
dataset=self.data_val,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
dataset=self.data_test,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
shuffle=False,
)