# @package _global_ | |
# specify here default training configuration | |
defaults: | |
- _self_ | |
- datamodule: focus.yaml | |
- model: focus.yaml | |
- callbacks: default.yaml | |
- logger: null # set logger here or use command line (e.g. `python train.py logger=tensorboard`) | |
- trainer: long.yaml | |
- log_dir: default.yaml | |
# experiment configs allow for version control of specific configurations | |
# e.g. best hyperparameters for each combination of model and datamodule | |
- experiment: null | |
# debugging config (enable through command line, e.g. `python train.py debug=default) | |
- debug: null | |
# config for hyperparameter optimization | |
- hparams_search: null | |
# optional local config for machine/user specific settings | |
# it's optional since it doesn't need to exist and is excluded from version control | |
- optional local: default.yaml | |
# enable color logging | |
- override hydra/hydra_logging: colorlog | |
- override hydra/job_logging: colorlog | |
# path to original working directory | |
# hydra hijacks working directory by changing it to the new log directory | |
# https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory | |
original_work_dir: ${hydra:runtime.cwd} | |
# path to folder with data | |
data_dir: ${original_work_dir}/data | |
# pretty print config at the start of the run using Rich library | |
print_config: True | |
# disable python warnings if they annoy you | |
ignore_warnings: True | |
# set False to skip model training | |
train: True | |
# evaluate on test set, using best model weights achieved during training | |
# lightning chooses best weights based on the metric specified in checkpoint callback | |
test: True | |
# seed for random number generators in pytorch, numpy and python.random | |
seed: null | |
# default name for the experiment, determines logging folder path | |
# (you can overwrite this name in experiment configs) | |
name: "default" | |