|
import pandas as pd |
|
from collections import defaultdict |
|
from dotenv import load_dotenv |
|
import os |
|
from PIL import Image, ImageDraw |
|
import math |
|
import json |
|
import random |
|
|
|
class StackEntry: |
|
def __init__(self): |
|
self.images = [] |
|
self.objects = [] |
|
def add_image(self, image): |
|
self.images.append(image) |
|
def add_object(self, object): |
|
self.objects.append(object) |
|
def sort(self): |
|
self.images.sort(key=lambda x: x.focus_value) |
|
|
|
def get_neighbours(img, x, y, dimensions): |
|
neighbour_candidates = [(-1,-1), (0, -1), (1, -1), (-1, 0), (1,0), (-1,1), (0,1), (1,1)] |
|
|
|
width, height = img.size |
|
|
|
neighbours = [] |
|
for x_offset, y_offset in neighbour_candidates: |
|
neighbour_x = x + x_offset * dimensions |
|
neighbour_y = y + y_offset * dimensions |
|
|
|
if neighbour_x >= 0 and neighbour_x + dimensions <= width and neighbour_y >= 0 and neighbour_y + dimensions <= height: |
|
box = [neighbour_x, neighbour_y, neighbour_x + dimensions, neighbour_y + dimensions] |
|
neighbours.append((neighbour_x, neighbour_y, img.crop(box))) |
|
else: |
|
neighbours.append(None) |
|
return neighbours |
|
|
|
def extract_object_tiles(obj, stack_images, in_folder, threshold = 0.25): |
|
x_start = int(obj.x_min / size) * size |
|
x_end = int(math.ceil(obj.x_max / size)) * size |
|
y_start = int(obj.y_min / size) * size |
|
y_end = int(math.ceil(obj.y_max / size)) * size |
|
|
|
tiles = [] |
|
|
|
focus_stack_images = list(map(lambda x: (x, Image.open(os.path.join(in_folder, x.file_path))), stack_images)) |
|
|
|
|
|
for y in range(y_start, y_end, size): |
|
for x in range(x_start, x_end, size): |
|
|
|
if compute_overlap([x, y, x + size, y + size], [obj.x_min, obj.y_min, obj.x_max, obj.y_max]) > size * size * threshold: |
|
stack = [] |
|
for row, img in focus_stack_images: |
|
box = [x, y, x + size, y + size] |
|
crop = img.crop(box) |
|
|
|
neighbours = get_neighbours(img, x, y, size) |
|
stack.append((row, box[:2], crop, neighbours)) |
|
tiles.append(stack) |
|
return tiles |
|
|
|
|
|
def save_tile(original_file_path, out_dir, x : int, y : int, img, overwrite = False): |
|
path, file_name = os.path.split(original_file_path) |
|
name, ext = os.path.splitext(file_name) |
|
|
|
out_path = os.path.join(out_dir, path) |
|
save_to = os.path.join(out_path, f'{name}_{x}_{y}{ext}') |
|
|
|
if not os.path.exists(out_path): |
|
os.makedirs(out_path) |
|
if overwrite or not os.path.exists(save_to): |
|
img.save(save_to) |
|
return os.path.join(path, f'{name}_{x}_{y}{ext}') |
|
|
|
def compute_overlap(rect1, rect2): |
|
dx = min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]) |
|
dy = min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]) |
|
return dx * dy |
|
|
|
def save_obj_tiles(obj, out_folder, in_folder, stack_images): |
|
extracted = extract_object_tiles(obj, stack_images, in_folder) |
|
z_stacks = [] |
|
for z_stack in extracted: |
|
z_stack_images = [] |
|
for row, box, img, neigbours in z_stack: |
|
|
|
neighbours = [] |
|
|
|
image_path = save_tile(row.file_path, out_folder, box[0], box[1], img) |
|
for neighbour in neigbours: |
|
n_path = None |
|
if neighbour: |
|
x, y, n_img = neighbour |
|
n_path = save_tile(row.file_path, out_folder, x, y, n_img) |
|
neighbours.append(n_path) |
|
|
|
z_stack_images.append({ |
|
"focus_value": row["focus_value"], |
|
"image_path": image_path, |
|
"neighbours": neighbours, |
|
"original_filename": row["file_name"], |
|
"scan_uuid": row["uuid"], |
|
"study_id": row["study_id"], |
|
}) |
|
z_stacks.append({ |
|
"best_index": None, |
|
"images" : z_stack_images, |
|
"obj_name": obj["name"], |
|
"stack_id": obj["stack_id"], |
|
}) |
|
|
|
return z_stacks |
|
|
|
def save_stack(stack, out_folder, in_folder): |
|
z_stacks = [] |
|
for obj in stack.objects: |
|
z_stacks.extend(save_obj_tiles(obj, out_folder, in_folder, stack.images)) |
|
return z_stacks |
|
|
|
|
|
if __name__ == "__main__": |
|
load_dotenv() |
|
print("Geting environment variables...") |
|
size = int(os.getenv('IMG_SIZE')) |
|
root_in = os.getenv('ROOT_IN') |
|
|
|
print(f'img_size: ') |
|
print(f'in_folder: {root_in}') |
|
|
|
print("Loading data from csv files...") |
|
objects = pd.read_csv("out/test_objects.csv", index_col=0) |
|
stacks = pd.read_csv("out/test_stacks.csv", index_col=0) |
|
|
|
|
|
stacks_dict = defaultdict(lambda: StackEntry()) |
|
|
|
print("Building internal datastructure...") |
|
|
|
for (index, row) in stacks.iterrows(): |
|
stacks_dict[row.stack_id].add_image(row) |
|
|
|
for values in stacks_dict.values(): |
|
values.sort() |
|
|
|
|
|
for (index, row) in objects.iterrows(): |
|
stacks_dict[row.stack_id].add_object(row) |
|
|
|
out_folder = "out" |
|
z_stacks = [] |
|
|
|
print("Generating image tiles and writing them to file...") |
|
for stack in stacks_dict.values(): |
|
z_stacks.extend(save_stack(stack,"out", root_in)) |
|
|
|
|
|
print("Shuffling data...") |
|
random.shuffle(z_stacks) |
|
|
|
print("Writing meta-data for annotation to file...") |
|
with open(os.path.join(out_folder, "data.json"), 'w') as file: |
|
file.write(json.dumps(z_stacks)) |
|
|