master_thesis_models / src /models /focus_conv_module.py
Hannes Kuchelmeister
add testing notebook for convolutional neural network
ad947ed
raw
history blame
6.16 kB
from typing import Any, List
import torch
import torch.nn.functional as F
from torch import nn
from pytorch_lightning import LightningModule
from torchmetrics import MaxMetric, MeanAbsoluteError, MinMetric
from torchmetrics.classification.accuracy import Accuracy
class SimpleConvNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class SimpleDenseNet(nn.Module):
def __init__(self, hparams: dict):
super().__init__()
self.model = nn.Sequential(
nn.Linear(hparams["input_size"], hparams["lin1_size"]),
nn.BatchNorm1d(hparams["lin1_size"]),
nn.ReLU(),
nn.Linear(hparams["lin1_size"], hparams["lin2_size"]),
nn.BatchNorm1d(hparams["lin2_size"]),
nn.ReLU(),
nn.Linear(hparams["lin2_size"], hparams["lin3_size"]),
nn.BatchNorm1d(hparams["lin3_size"]),
nn.ReLU(),
nn.Linear(hparams["lin3_size"], hparams["output_size"]),
)
def forward(self, x):
batch_size, channels, width, height = x.size()
# (batch, 1, width, height) -> (batch, 1*width*height)
x = x.view(batch_size, -1)
return self.model(x)
class FocusLitModule(LightningModule):
"""
Example of LightningModule for MNIST classification.
A LightningModule organizes your PyTorch code into 5 sections:
- Computations (init).
- Train loop (training_step)
- Validation loop (validation_step)
- Test loop (test_step)
- Optimizers (configure_optimizers)
Read the docs:
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
"""
def __init__(
self,
input_size: int = 75 * 75 * 3,
lin1_size: int = 256,
lin2_size: int = 256,
lin3_size: int = 256,
output_size: int = 1,
lr: float = 0.001,
weight_decay: float = 0.0005,
):
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# it also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
self.model = SimpleDenseNet(hparams=self.hparams)
# loss function
self.criterion = torch.nn.L1Loss()
# use separate metric instance for train, val and test step
# to ensure a proper reduction over the epoch
self.train_mae = MeanAbsoluteError()
self.val_mae = MeanAbsoluteError()
self.test_mae = MeanAbsoluteError()
# for logging best so far validation accuracy
self.val_mae_best = MinMetric()
def forward(self, x: torch.Tensor):
return self.model(x)
def step(self, batch: Any):
x = batch["image"]
y = batch["focus_value"]
logits = self.forward(x)
loss = self.criterion(logits, y)
preds = torch.squeeze(logits)
return loss, preds, y
def training_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log train metrics
mae = self.train_mae(preds, targets)
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("train/mae", mae, on_step=False, on_epoch=True, prog_bar=True)
# we can return here dict with any tensors
# and then read it in some callback or in `training_epoch_end()`` below
# remember to always return loss from `training_step()` or else backpropagation will fail!
return {"loss": loss, "preds": preds, "targets": targets}
def training_epoch_end(self, outputs: List[Any]):
# `outputs` is a list of dicts returned from `training_step()`
pass
def validation_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log val metrics
mae = self.val_mae(preds, targets)
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("val/mae", mae, on_step=False, on_epoch=True, prog_bar=True)
return {"loss": loss, "preds": preds, "targets": targets}
def validation_epoch_end(self, outputs: List[Any]):
mae = self.val_mae.compute() # get val accuracy from current epoch
self.val_mae_best.update(mae)
self.log(
"val/mae_best", self.val_mae_best.compute(), on_epoch=True, prog_bar=True
)
def test_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log test metrics
mae = self.test_mae(preds, targets)
self.log("test/loss", loss, on_step=False, on_epoch=True)
self.log("test/mae", mae, on_step=False, on_epoch=True)
return {"loss": loss, "preds": preds, "targets": targets}
def test_epoch_end(self, outputs: List[Any]):
print(outputs)
pass
def on_epoch_end(self):
# reset metrics at the end of every epoch
self.train_mae.reset()
self.test_mae.reset()
self.val_mae.reset()
def configure_optimizers(self):
"""Choose what optimizers and learning-rate schedulers.
Normally you'd need one. But in the case of GANs or similar you might have multiple.
See examples here:
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
"""
return torch.optim.Adam(
params=self.parameters(),
lr=self.hparams.lr,
weight_decay=self.hparams.weight_decay,
)