File size: 5,967 Bytes
ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed dce8df2 ad947ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from typing import Any, List
import torch
import torch.nn.functional as F
from torch import nn
from pytorch_lightning import LightningModule
from torchmetrics import MaxMetric, MeanAbsoluteError, MinMetric
from torchmetrics.classification.accuracy import Accuracy
class SimpleConvNet(nn.Module):
def __init__(self, hparams):
super().__init__()
pool_size = hparams["pool_size"] # 2
conv1_size = hparams["conv1_size"] # 5
conv1_out = hparams["conv1_channels"] # 6
conv2_size = hparams["conv1_channels"] # 5
conv2_out = hparams["conv2_channels"] # 16
size_img = hparams["image_size"] # 150
lin1_size = hparams["lin1_size"] # 100
lin2_size = hparams["lin2_size"] # 80
output_size = hparams["output_size"] # 1
size_img -= conv1_size - 1
size_img = int((size_img) / pool_size)
size_img -= conv2_size - 1
size_img = int(size_img / pool_size)
self.model = nn.Sequential(
nn.Conv2d(3, conv1_out, conv1_size),
nn.MaxPool2d(pool_size, pool_size),
nn.Conv2d(conv1_out, conv2_out, conv2_size),
nn.MaxPool2d(pool_size, pool_size),
nn.Flatten(),
nn.Linear(conv2_out * size_img * size_img, lin1_size),
nn.Linear(lin1_size, lin2_size),
nn.Linear(lin2_size, output_size),
)
def forward(self, x):
x = self.model(x)
return x
class FocusConvLitModule(LightningModule):
"""
Example of LightningModule for MNIST classification.
A LightningModule organizes your PyTorch code into 5 sections:
- Computations (init).
- Train loop (training_step)
- Validation loop (validation_step)
- Test loop (test_step)
- Optimizers (configure_optimizers)
Read the docs:
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
"""
def __init__(
self,
image_size: int = 150,
pool_size: int = 2,
conv1_size: int = 5,
conv1_channels: int = 6,
conv2_size: int = 5,
conv2_channels: int = 16,
lin1_size: int = 100,
lin2_size: int = 80,
output_size: int = 1,
lr: float = 0.001,
weight_decay: float = 0.0005,
):
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# it also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
self.model = SimpleConvNet(hparams=self.hparams)
# loss function
self.criterion = torch.nn.MSELoss()
# use separate metric instance for train, val and test step
# to ensure a proper reduction over the epoch
self.train_mae = MeanAbsoluteError()
self.val_mae = MeanAbsoluteError()
self.test_mae = MeanAbsoluteError()
# for logging best so far validation accuracy
self.val_mae_best = MinMetric()
def forward(self, x: torch.Tensor):
return self.model(x)
def step(self, batch: Any):
x = batch["image"]
y = batch["focus_value"]
logits = self.forward(x)
loss = self.criterion(logits, y.unsqueeze(1))
preds = torch.squeeze(logits)
return loss, preds, y
def training_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log train metrics
mae = self.train_mae(preds, targets)
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("train/mae", mae, on_step=False, on_epoch=True, prog_bar=True)
# we can return here dict with any tensors
# and then read it in some callback or in `training_epoch_end()`` below
# remember to always return loss from `training_step()` or else
# backpropagation will fail!
return {"loss": loss, "preds": preds, "targets": targets}
def training_epoch_end(self, outputs: List[Any]):
# `outputs` is a list of dicts returned from `training_step()`
pass
def validation_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log val metrics
mae = self.val_mae(preds, targets)
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("val/mae", mae, on_step=False, on_epoch=True, prog_bar=True)
return {"loss": loss, "preds": preds, "targets": targets}
def validation_epoch_end(self, outputs: List[Any]):
mae = self.val_mae.compute() # get val accuracy from current epoch
self.val_mae_best.update(mae)
self.log(
"val/mae_best", self.val_mae_best.compute(), on_epoch=True, prog_bar=True
)
def test_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log test metrics
mae = self.test_mae(preds, targets)
self.log("test/loss", loss, on_step=False, on_epoch=True)
self.log("test/mae", mae, on_step=False, on_epoch=True)
return {"loss": loss, "preds": preds, "targets": targets}
def test_epoch_end(self, outputs: List[Any]):
print(outputs)
pass
def on_epoch_end(self):
# reset metrics at the end of every epoch
self.train_mae.reset()
self.test_mae.reset()
self.val_mae.reset()
def configure_optimizers(self):
"""Choose what optimizers and learning-rate schedulers.
Normally you'd need one. But in the case of GANs or similar you might
have multiple.
See examples here:
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
"""
return torch.optim.Adam(
params=self.parameters(),
lr=self.hparams.lr,
weight_decay=self.hparams.weight_decay,
)
|