File size: 4,497 Bytes
d2e7940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from typing import Any, List

import torch
from pytorch_lightning import LightningModule
from torchmetrics import MaxMetric
from torchmetrics.classification.accuracy import Accuracy

from src.models.components.simple_dense_net import SimpleDenseNet


class MNISTLitModule(LightningModule):
    """
    Example of LightningModule for MNIST classification.

    A LightningModule organizes your PyTorch code into 5 sections:
        - Computations (init).
        - Train loop (training_step)
        - Validation loop (validation_step)
        - Test loop (test_step)
        - Optimizers (configure_optimizers)

    Read the docs:
        https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
    """

    def __init__(
        self,
        input_size: int = 784,
        lin1_size: int = 256,
        lin2_size: int = 256,
        lin3_size: int = 256,
        output_size: int = 10,
        lr: float = 0.001,
        weight_decay: float = 0.0005,
    ):
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # it also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        self.model = SimpleDenseNet(hparams=self.hparams)

        # loss function
        self.criterion = torch.nn.CrossEntropyLoss()

        # use separate metric instance for train, val and test step
        # to ensure a proper reduction over the epoch
        self.train_acc = Accuracy()
        self.val_acc = Accuracy()
        self.test_acc = Accuracy()

        # for logging best so far validation accuracy
        self.val_acc_best = MaxMetric()

    def forward(self, x: torch.Tensor):
        return self.model(x)

    def step(self, batch: Any):
        x, y = batch
        logits = self.forward(x)
        loss = self.criterion(logits, y)
        preds = torch.argmax(logits, dim=1)
        return loss, preds, y

    def training_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log train metrics
        acc = self.train_acc(preds, targets)
        self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
        self.log("train/acc", acc, on_step=False, on_epoch=True, prog_bar=True)

        # we can return here dict with any tensors
        # and then read it in some callback or in `training_epoch_end()`` below
        # remember to always return loss from `training_step()` or else backpropagation will fail!
        return {"loss": loss, "preds": preds, "targets": targets}

    def training_epoch_end(self, outputs: List[Any]):
        # `outputs` is a list of dicts returned from `training_step()`
        pass

    def validation_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log val metrics
        acc = self.val_acc(preds, targets)
        self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
        self.log("val/acc", acc, on_step=False, on_epoch=True, prog_bar=True)

        return {"loss": loss, "preds": preds, "targets": targets}

    def validation_epoch_end(self, outputs: List[Any]):
        acc = self.val_acc.compute()  # get val accuracy from current epoch
        self.val_acc_best.update(acc)
        self.log("val/acc_best", self.val_acc_best.compute(), on_epoch=True, prog_bar=True)

    def test_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log test metrics
        acc = self.test_acc(preds, targets)
        self.log("test/loss", loss, on_step=False, on_epoch=True)
        self.log("test/acc", acc, on_step=False, on_epoch=True)

        return {"loss": loss, "preds": preds, "targets": targets}

    def test_epoch_end(self, outputs: List[Any]):
        pass

    def on_epoch_end(self):
        # reset metrics at the end of every epoch
        self.train_acc.reset()
        self.test_acc.reset()
        self.val_acc.reset()

    def configure_optimizers(self):
        """Choose what optimizers and learning-rate schedulers to use in your optimization.
        Normally you'd need one. But in the case of GANs or similar you might have multiple.

        See examples here:
            https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
        """
        return torch.optim.Adam(
            params=self.parameters(), lr=self.hparams.lr, weight_decay=self.hparams.weight_decay
        )