File size: 4,117 Bytes
b9a0edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768c5a5
b9a0edf
01c232d
 
b9a0edf
01c232d
62e6b5e
b9a0edf
 
 
 
 
 
 
 
 
01c232d
b9a0edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197b90e
 
 
b9a0edf
197b90e
b9a0edf
62e6b5e
b9a0edf
 
197b90e
b9a0edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
base_model: hon9kon9ize/CantoneseLLMChat-v0.5
tags:
- llama-factory
- full
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: open-lilm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# open-lilm

Warning: Due to the nature of the training data, this model is highly likely to return violent, racist  and discriminative content. DO NOT USE IN PRODUCTION ENVIRONMENT.


Inspired by [another project](https://github.com/alphrc/lilm).
This is a finetuned model based on [CantoneseLLMChat-v0.5](https://huggingface.co/hon9kon9ize/CantoneseLLMChat-v0.5) which everybody can use without the need for a Mac with 128GB RAM.

Following the same principle, we filtered 377,595 post and reply pairs in LIHKG forum from the [LIHKG Dataset](https://huggingface.co/datasets/AlienKevin/LIHKG).
- Reply must be a direct reply to the original post by a user other than the author
- The total number of reactions (positive or negative) must be larger than 20
- The post and reply pair has to be shorter than 2048 words

To avoid political complications, the dataset will not be made publicly available. 


## Intended uses & limitations

Due to the nature of an online and anonymous forum, the training data and the model are full of rude, violent, racist and discriminative language. 
This model is only intended for research or entertainment purposes.

The comments on LIHKG also tend to be very short. Thus the model cannot generate anything more than a line.


## How to use it?
You can run it on [Colab](https://colab.research.google.com/drive/1veRH2GP3ZR3buYCG2_bFUKu0kS-hv1S2) or anywhere you want based on the code:
```python

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, LlamaTokenizer, GenerationConfig, pipeline
from peft import PeftModel, PeftMixedModel
import torch


model_name = "0xtaipoian/open-lilm"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
  model_name,
  torch_dtype=torch.bfloat16,
  trust_remote_code=True,
  quantization_config=bnb_config,
)

def chat(messages, temperature=0.9, max_new_tokens=200):
    input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to('cuda:0')
    output_ids = model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=True)

    chatml = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    print(chatml)

    response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=False)

    return response

messages = [
    # {"role": "system", "content": ""},
     {"role": "user",

             "content":
"""
密陽44人輪姦案」受害女隔20年現身:時間停在2004,不記得
"""}]

result = chat(messages, max_new_tokens=200, temperature=1)

print(result)
```

### Training Procedures

The model was trained for ~15 hours on a single NVIDIA H100 96GB HBM2e GPU with [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory).
We only used 1 GPU as this is our first run on our brand-new H100 server. We are still testing different configurations. 

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- num_epochs: 1.0

### QLoRA Training 

To test out different configs, we trained another model using QLoRA for ~30 hours on a single NVIDIA H100 96GB HBM2e GPU with [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). 

The following hyperparameters were used during training:
- learning_rate: 1e-04
- train_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size:128
- num_epochs: 3.0