0xnu commited on
Commit
5974ae3
·
verified ·
1 Parent(s): 1b7fd57

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -35
README.md CHANGED
@@ -90,41 +90,6 @@ embeddings = model.encode(sentences)
90
  print(embeddings)
91
  ```
92
 
93
- ### Usage (HuggingFace Transformers)
94
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
95
-
96
- ```python
97
- from transformers import AutoTokenizer, AutoModel
98
- import torch
99
-
100
-
101
- # Mean Pooling - Take attention mask into account for correct averaging
102
- def mean_pooling(model_output, attention_mask):
103
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
104
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
105
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
106
-
107
- # Sentences we want sentence embeddings for
108
- sentences = ["Kini olu ilu England", "Kini eranko ti o gbona julọ ni agbaye?"]
109
-
110
- # Load model from HuggingFace Hub
111
- tokenizer = AutoTokenizer.from_pretrained('0xnu/pmmlv2-fine-tuned-yoruba')
112
- model = AutoModel.from_pretrained('0xnu/pmmlv2-fine-tuned-yoruba')
113
-
114
- # Tokenize sentences
115
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
116
-
117
- # Compute token embeddings
118
- with torch.no_grad():
119
- model_output = model(**encoded_input)
120
-
121
- # Perform pooling. In this case, max pooling.
122
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
123
-
124
- print("Sentence embeddings:")
125
- print(sentence_embeddings)
126
- ```
127
-
128
  ### License
129
 
130
  This project is licensed under the [MIT License](./LICENSE).
 
90
  print(embeddings)
91
  ```
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  ### License
94
 
95
  This project is licensed under the [MIT License](./LICENSE).