File size: 4,811 Bytes
d0dae57 3397a8d d0dae57 3397a8d d0dae57 3397a8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
language:
- ru
license: apache-2.0
datasets:
- 0x7194633/fialka-v3-data
pipeline_tag: text-generation
model-index:
- name: fialka-7B-v3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 48.55
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=0x7194633/fialka-7B-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 71.05
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=0x7194633/fialka-7B-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=0x7194633/fialka-7B-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.79
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=0x7194633/fialka-7B-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.46
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=0x7194633/fialka-7B-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.52
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=0x7194633/fialka-7B-v3
name: Open LLM Leaderboard
---
# Fialka v3.0 7B

## Description
Fialka language models are trained to follow instructions and maintain communication in Russian. The third version of the model was based on the [Llama 2 model](https://huggingface.co/rccmsu/ruadapt_llama2_7b_v0.1), which was specifically trained on a large corpus of Russian, allowing Fialka to generate its responses more accurately.
## Usage
The model has a query format as in zephyr.
```
<|user|>
Что такое мем?</s>
<|assistant|>
Мем - это культурный феномен, который может быть описан как информационный вирус. Он представляет собой абстрактный элемент культуры или идеи в виде изображения (обычно с изображением человека) и его краткого текста на основе которого можно создать мемы различных форматов: от графических до текстовых шуток; мема могут использоваться для передачи определенных идей через интернет-сообщество без необходимости использовать слова напрямую!</s>
```
Check out the [space](https://huggingface.co/spaces/0x7194633/fialka) to use the model in UI without downloading.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_0x7194633__fialka-7B-v3)
| Metric |Value|
|---------------------------------|----:|
|Avg. |46.40|
|AI2 Reasoning Challenge (25-Shot)|48.55|
|HellaSwag (10-Shot) |71.05|
|MMLU (5-Shot) |43.06|
|TruthfulQA (0-shot) |44.79|
|Winogrande (5-shot) |69.46|
|GSM8k (5-shot) | 1.52|
|