--- license: apache-2.0 language: - zh base_model: - THUDM/glm-4-9b pipeline_tag: text-generation --- # MentalGLM is a series of large language models designed for mental health analysis tasks in Chinese. We have developed the MentalGLM series, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media, based on GLM-4-9b and GLM-4-9b-chat. ## How to use ```bash import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" tokenizer = AutoTokenizer.from_pretrained("zwzzz/MentalGLM", trust_remote_code=True) query = "考虑以下这个帖子,帖子体现了什么认知路径?这已经够糟糕的了。不过在那一周我将完全失去我的支持。我没有什么可期待的。" inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ) inputs = inputs.to(device) model = AutoModelForCausalLM.from_pretrained( "zwzzz/MentalGLM", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).to(device).eval() gen_kwargs = {"max_length": 1000, "do_sample": True, "top_k": 1} with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Citation Article address:[https://arxiv.org/pdf/2410.10323.pdf](https://arxiv.org/pdf/2410.10323.pdf) ```bash @article{zhai2024mentalglm, title={MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media}, author={Zhai, Wei and Bai, Nan and Zhao, Qing and Li, Jianqiang and Wang, Fan and Qi, Hongzhi and Jiang, Meng and Wang, Xiaoqin and Yang, Bing Xiang and Fu, Guanghui}, journal={arXiv preprint arXiv:2410.10323}, year={2024} } ```