--- library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - stable-diffusion - stable-diffusion-diffusers - image-to-video - diffusers - diffusers-training inference: true --- # Image-to-Video finetuning - zhuhz22/try4 ## Pipeline usage You can use the pipeline like so: ```python from diffusers import EulerDiscreteScheduler import torch from diffusers.utils import load_image, export_to_video from svd.inference.pipline_CILsvd import StableVideoDiffusionCILPipeline # set the start time M (sigma_max) for inference scheduler = EulerDiscreteScheduler.from_pretrained( "zhuhz22/try4", subfolder="scheduler", sigma_max=100 ) pipeline = StableVideoDiffusionCILPipeline.from_pretrained( "zhuhz22/try4", scheduler=scheduler, torch_dtype=torch.float16, variant="fp16" ) # Note that set the default parameters, fps, motion_bucket_id pipeline.enable_model_cpu_offload() # demo image = load_image("demo/a car parked in a parking lot with palm trees nearby,calm seas and skies..png") image = image.resize((512,320)) generator = torch.manual_seed(42) # analytic_path: # if is video path, compute the initial noise automatically. # if is tensor path, load # if none, standard inference analytic_path=None frames = pipeline( image, height=image.height, width=image.width, num_frames=16, fps=3, motion_bucket_id=20, decode_chunk_size=8, generator=generator, analytic_path=analytic_path ).frames[0] export_to_video(frames, "generated.mp4", fps=7) ``` ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]