File size: 10,825 Bytes
b2febd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from genericpath import exists
import os
import sys
import argparse
from datetime import datetime
import numpy as np
import time
from tqdm import tqdm

CONTACT_DIR = os.path.dirname(os.path.abspath(__file__))
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
ROOT_DIR = os.path.dirname(os.path.dirname(BASE_DIR))
sys.path.append(os.path.join(BASE_DIR))
sys.path.append(os.path.join(ROOT_DIR))
sys.path.append(os.path.join(BASE_DIR, 'pointnet2',  'models'))
sys.path.append(os.path.join(BASE_DIR, 'pointnet2',  'utils'))

# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import tensorflow.compat.v1 as tf
tf.disable_eager_execution()
TF2 = True
physical_devices = tf.config.experimental.list_physical_devices('GPU')
print(physical_devices)
tf.config.experimental.set_memory_growth(physical_devices[0], True)

import config_utils
from data import PointCloudReader, load_scene_contacts, center_pc_convert_cam
from summaries import build_summary_ops, build_file_writers
from tf_train_ops import load_labels_and_losses, build_train_op
from contact_grasp_estimator import GraspEstimator

def train(global_config, log_dir):
    """
    Trains Contact-GraspNet

    Arguments:
        global_config {dict} -- config dict
        log_dir {str} -- Checkpoint directory
    """

    contact_infos = load_scene_contacts(global_config['DATA']['data_path'],
                                        scene_contacts_path=global_config['DATA']['scene_contacts_path'])
    
    num_train_samples = len(contact_infos)-global_config['DATA']['num_test_scenes']
    num_test_samples = global_config['DATA']['num_test_scenes']
        
    print('using %s meshes' % (num_train_samples + num_test_samples))
    if 'train_and_test' in global_config['DATA'] and global_config['DATA']['train_and_test']:
        num_train_samples = num_train_samples + num_test_samples
        num_test_samples = 0
        print('using train and test data')

    pcreader = PointCloudReader(
        root_folder=global_config['DATA']['data_path'],
        batch_size=global_config['OPTIMIZER']['batch_size'],
        estimate_normals=global_config['DATA']['input_normals'],
        raw_num_points=global_config['DATA']['raw_num_points'],
        use_uniform_quaternions = global_config['DATA']['use_uniform_quaternions'],
        scene_obj_scales = [c['obj_scales'] for c in contact_infos],
        scene_obj_paths = [c['obj_paths'] for c in contact_infos],
        scene_obj_transforms = [c['obj_transforms'] for c in contact_infos],
        num_train_samples = num_train_samples,
        num_test_samples = num_test_samples,
        use_farthest_point = global_config['DATA']['use_farthest_point'],
        intrinsics=global_config['DATA']['intrinsics'],
        elevation=global_config['DATA']['view_sphere']['elevation'],
        distance_range=global_config['DATA']['view_sphere']['distance_range'],
        pc_augm_config=global_config['DATA']['pc_augm'],
        depth_augm_config=global_config['DATA']['depth_augm']
    )

    with tf.Graph().as_default():
        
        # Build the model
        grasp_estimator = GraspEstimator(global_config)
        ops = grasp_estimator.build_network()
        
        # contact_tensors = load_contact_grasps(contact_infos, global_config['DATA'])
        
        loss_ops = load_labels_and_losses(grasp_estimator, contact_infos, global_config)

        ops.update(loss_ops)
        ops['train_op'] = build_train_op(ops['loss'], ops['step'], global_config)

        # Add ops to save and restore all the variables.
        saver = tf.train.Saver(save_relative_paths=True, keep_checkpoint_every_n_hours=4)

        # Create a session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        sess = tf.Session(config=config)

        # Log summaries
        summary_ops = build_summary_ops(ops, sess, global_config)

        # Init/Load weights
        grasp_estimator.load_weights(sess, saver, log_dir, mode='train')

        # sess = tf_debug.LocalCLIDebugWrapperSession(sess)
        # sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
        file_writers = build_file_writers(sess, log_dir)

    ## define: epoch = arbitrary number of views of every training scene
    cur_epoch = sess.run(ops['step']) // num_train_samples
    for epoch in range(cur_epoch, global_config['OPTIMIZER']['max_epoch']):
        log_string('**** EPOCH %03d ****' % (epoch))
        
        sess.run(ops['iterator'].initializer)
        epoch_time = time.time()
        step = train_one_epoch(sess, ops, summary_ops, file_writers, pcreader)
        log_string('trained epoch {} in: {}'.format(epoch, time.time()-epoch_time))

        # Save the variables to disk.
        save_path = saver.save(sess, os.path.join(log_dir, "model.ckpt"), global_step=step, write_meta_graph=False)
        log_string("Model saved in file: %s" % save_path)

        if num_test_samples > 0:
            eval_time = time.time()
            eval_validation_scenes(sess, ops, summary_ops, file_writers, pcreader)
            log_string('evaluation time: {}'.format(time.time()-eval_time))

def train_one_epoch(sess, ops, summary_ops, file_writers, pcreader):
    """ ops: dict mapping from string to tf ops """
    
    log_string(str(datetime.now()))
    loss_log = np.zeros((10,7))
    get_time = time.time()
    
    for batch_idx in range(pcreader._num_train_samples):

        batch_data, cam_poses, scene_idx = pcreader.get_scene_batch(scene_idx=batch_idx)
        
        # OpenCV OpenGL conversion
        cam_poses, batch_data = center_pc_convert_cam(cam_poses, batch_data)
        
        feed_dict = {ops['pointclouds_pl']: batch_data, ops['cam_poses_pl']: cam_poses,
                     ops['scene_idx_pl']: scene_idx, ops['is_training_pl']: True}

        step, summary, _, loss_val, dir_loss, bin_ce_loss, \
        offset_loss, approach_loss, adds_loss, adds_gt2pred_loss, scene_idx = sess.run([ops['step'], summary_ops['merged'], ops['train_op'], ops['loss'], ops['dir_loss'], 
                                                                                        ops['bin_ce_loss'], ops['offset_loss'], ops['approach_loss'], ops['adds_loss'], 
                                                                                        ops['adds_gt2pred_loss'], ops['scene_idx']], feed_dict=feed_dict)
        assert scene_idx[0] == scene_idx     
        
        loss_log[batch_idx%10,:] = loss_val, dir_loss, bin_ce_loss, offset_loss, approach_loss, adds_loss, adds_gt2pred_loss
        
        if (batch_idx+1)%10 == 0:
            file_writers['train_writer'].add_summary(summary, step)
            f = tuple(np.mean(loss_log, axis=0)) + ((time.time() - get_time) / 10., )
            log_string('total loss: %f \t dir loss: %f \t ce loss: %f \t off loss: %f \t app loss: %f adds loss: %f \t adds_gt2pred loss: %f \t batch time: %f' % f)
            get_time = time.time()
            
    return step

def eval_validation_scenes(sess, ops, summary_ops, file_writers, pcreader, max_eval_objects=500):
    """ ops: dict mapping from string to tf ops """
    is_training = False
    log_string(str(datetime.now()))
    loss_log = np.zeros((min(pcreader._num_test_samples, max_eval_objects),7))

    # resets accumulation of pr and auc data
    sess.run(summary_ops['pr_reset_op'])
    
    for batch_idx in np.arange(min(pcreader._num_test_samples, max_eval_objects)):

        batch_data, cam_poses, scene_idx = pcreader.get_scene_batch(scene_idx=pcreader._num_train_samples + batch_idx)

        # OpenCV OpenGL conversion
        cam_poses, batch_data = center_pc_convert_cam(cam_poses, batch_data)

        feed_dict = {ops['pointclouds_pl']: batch_data, ops['cam_poses_pl']: cam_poses,
                     ops['scene_idx_pl']: scene_idx, ops['is_training_pl']: False}

        scene_idx, step, loss_val, dir_loss, bin_ce_loss, offset_loss, approach_loss, adds_loss, adds_gt2pred_loss, pr_summary,_,_,_ = sess.run([ops['scene_idx'], ops['step'], ops['loss'], ops['dir_loss'], ops['bin_ce_loss'],
                                                                                                        ops['offset_loss'], ops['approach_loss'], ops['adds_loss'], ops['adds_gt2pred_loss'],
                                                                                                        summary_ops['merged_eval'], summary_ops['pr_update_op'], 
                                                                                                        summary_ops['auc_update_op']] + [summary_ops['acc_update_ops']], feed_dict=feed_dict)
        assert scene_idx[0] == (pcreader._num_train_samples + batch_idx)
        
        loss_log[batch_idx,:] = loss_val, dir_loss, bin_ce_loss, offset_loss, approach_loss, adds_loss, adds_gt2pred_loss

    file_writers['test_writer'].add_summary(pr_summary, step)
    f = tuple(np.mean(loss_log, axis=0))
    log_string('mean val loss: %f \t mean val dir loss: %f \t mean val ce loss: %f \t mean off loss: %f \t mean app loss: %f \t mean adds loss: %f \t mean adds_gt2pred loss: %f' % f)

    return step

if __name__ == "__main__":
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--ckpt_dir', default='checkpoints/contact_graspnet', help='Checkpoint dir')
    parser.add_argument('--data_path', type=str, default=None, help='Grasp data root dir')
    parser.add_argument('--max_epoch', type=int, default=None, help='Epochs to run')
    parser.add_argument('--batch_size', type=int, default=None, help='Batch Size during training')
    parser.add_argument('--arg_configs', nargs="*", type=str, default=[], help='overwrite config parameters')
    FLAGS = parser.parse_args()

    ckpt_dir = FLAGS.ckpt_dir
    if not os.path.exists(ckpt_dir): 
        if not os.path.exists(os.path.dirname(ckpt_dir)):
            ckpt_dir = os.path.join(BASE_DIR, ckpt_dir)
        os.makedirs(ckpt_dir, exist_ok=True) 
        
    os.system('cp {} {}'.format(os.path.join(CONTACT_DIR, 'contact_graspnet.py'), ckpt_dir)) # bkp of model def
    os.system('cp {} {}'.format(os.path.join(CONTACT_DIR, 'train.py'), ckpt_dir)) # bkp of train procedure

    LOG_FOUT = open(os.path.join(ckpt_dir, 'log_train.txt'), 'w')
    LOG_FOUT.write(str(FLAGS)+'\n')
    def log_string(out_str):
        LOG_FOUT.write(out_str+'\n')
        LOG_FOUT.flush()
        print(out_str)

    global_config = config_utils.load_config(ckpt_dir, batch_size=FLAGS.batch_size, max_epoch=FLAGS.max_epoch, 
                                          data_path= FLAGS.data_path, arg_configs=FLAGS.arg_configs, save=True)
    
    log_string(str(global_config))
    log_string('pid: %s'%(str(os.getpid())))

    train(global_config, ckpt_dir)

    LOG_FOUT.close()