zhaokaig's picture
LunarLander-v2 agent trained with PPO
c8ec988 verified
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e660fdc8820>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e660fdc88b0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e660fdc8940>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e660fdc89d0>",
"_build": "<function ActorCriticPolicy._build at 0x7e660fdc8a60>",
"forward": "<function ActorCriticPolicy.forward at 0x7e660fdc8af0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e660fdc8b80>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e660fdc8c10>",
"_predict": "<function ActorCriticPolicy._predict at 0x7e660fdc8ca0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e660fdc8d30>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e660fdc8dc0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e660fdc8e50>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7e660fd627c0>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1724739829049396145,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBbVX3g1m+MAWyUS9aMAXSUR0CW40hWo3rEdX2UKGgGR0BxjyJCSidraAdL4mgIR0CW42ZVGTcJdX2UKGgGR0BuUjxmTTvzaAdL3mgIR0CW45+WGATadX2UKGgGR0BuvRzHS4OMaAdL4WgIR0CW48skIHC5dX2UKGgGR0BwHV+7UXpGaAdL2GgIR0CW5VOAiFCcdX2UKGgGR0BxUehVU+9raAdL/GgIR0CW5rA8SwnqdX2UKGgGR0BtjMB6rvLHaAdL7mgIR0CW5u4GD+R6dX2UKGgGR0BwOtpdrwfAaAdL7GgIR0CW5u4AS39adX2UKGgGR0BtnrByjpLVaAdL5WgIR0CW52NW2gFpdX2UKGgGR0ByAgOwxFiKaAdL3GgIR0CW58AsCkoGdX2UKGgGR0BwIBirksBiaAdL1GgIR0CW6FkWAPNFdX2UKGgGR0BvfHqzJIUbaAdL2mgIR0CW6H5z5oGqdX2UKGgGR0ByUy4uscQzaAdL/2gIR0CW6JD+irT6dX2UKGgGR0BwtyOsDGLlaAdL3mgIR0CW6dPGyX2NdX2UKGgGR0BiotQIldC3aAdN6ANoCEdAlunsKsuFpXV9lChoBkdAcIvtfoicG2gHTQMBaAhHQJbp+zByjpN1fZQoaAZHQHIQigK4QSVoB0vlaAhHQJbqLkHUtqZ1fZQoaAZHQGpqvwVj7Q9oB0viaAhHQJbqLN0NjLB1fZQoaAZHQG+/Fo+Ofd1oB0vmaAhHQJbqa4c3l0Z1fZQoaAZHQHIARbwBo25oB0vnaAhHQJbqhwEQoTh1fZQoaAZHQG+sXGn4wh5oB0vcaAhHQJbrB9E1EVp1fZQoaAZHQHHrotUXHipoB0vgaAhHQJbsL71qWTp1fZQoaAZHQHIpOs90RvpoB0vpaAhHQJbso2S+xnp1fZQoaAZHQHMtZpnHvMNoB0vtaAhHQJbtf3JxNqR1fZQoaAZHQHJC2WpqASZoB0vWaAhHQJbtnDLr5Zd1fZQoaAZHQG6DtOM2m51oB00TAWgIR0CW7hz3AVO9dX2UKGgGR0ByenIT4+KTaAdL/WgIR0CW7ndzXBgvdX2UKGgGR0BxILo/zJ6qaAdL9mgIR0CW7oJpnHvMdX2UKGgGR0BwzraDf3vhaAdL3WgIR0CW7wqI7/4qdX2UKGgGR0Byu9Pdl/YraAdL3WgIR0CW7xzbvgFYdX2UKGgGR0BwquO+7Dl6aAdL02gIR0CW72Jtix3WdX2UKGgGR0Bx8rCvX9R8aAdL6GgIR0CW76DE3sHCdX2UKGgGR0BxcrBRAKOUaAdL8GgIR0CW75+/QBxQdX2UKGgGR0BwA8KOT7l8aAdL8mgIR0CW79cQiA2AdX2UKGgGR0BwzoTj/+85aAdL0GgIR0CW8ADTjNpudX2UKGgGR0BxZhAxBVuKaAdL/GgIR0CW8G0XP7emdX2UKGgGR0Bw+0fkmx+saAdL5GgIR0CW8Z5ZKWcCdX2UKGgGR0Buk5iExqO+aAdL7WgIR0CW8kuFpPAPdX2UKGgGR0BvQhTOxB3SaAdL22gIR0CW8sUD+zdDdX2UKGgGR0BwHhh6Skj5aAdL5WgIR0CW8yYfnwG4dX2UKGgGR0BtWqa5PM0QaAdL1mgIR0CW87Bj4HopdX2UKGgGR0BxdbSPU8V6aAdL6GgIR0CW9CIgeRxMdX2UKGgGR0BxAqyfL9uQaAdL32gIR0CW9IlCTlkpdX2UKGgGR0BxKypT/ACXaAdL1WgIR0CW9KT4+KTCdX2UKGgGR0BwiRzzVc2SaAdL3mgIR0CW9JfICEHudX2UKGgGR0BwzFQZXMhYaAdNDQFoCEdAlvTLzK9wm3V9lChoBkdAcJiaufVZtGgHS8xoCEdAlvToBBAv+XV9lChoBkdAbHfxBE8aGmgHS95oCEdAlvUW4iHIqHV9lChoBkdAbsZpnpSrHWgHS+FoCEdAlvUqHbh3q3V9lChoBkdAcXOcyWRigGgHTRMBaAhHQJb2whIOH311fZQoaAZHQHC7DjrAxi5oB0vsaAhHQJb3vRG+bmV1fZQoaAZHQHMXMmfGuLdoB0v3aAhHQJb41v0h/y51fZQoaAZHQHBs1BhQWN5oB0v0aAhHQJb5SCCjDbd1fZQoaAZHQHIaYe9zwMJoB00JAWgIR0CW+mOLiuMddX2UKGgGR0By/XeLvTgEaAdL9WgIR0CW+mgfEGaAdX2UKGgGR0Bx0BX9zfaYaAdL2GgIR0CW+oHwPRRedX2UKGgGR0Bw0qr2g398aAdL22gIR0CW+oqv/zasdX2UKGgGR0BwoSUY8+zMaAdL32gIR0CW+sOlfqoqdX2UKGgGR0BzIM4wRGtqaAdL1GgIR0CW+w/GEPDpdX2UKGgGR0BwPlb2USqVaAdL+2gIR0CW+w1IiC8OdX2UKGgGR0ByavfgrH2iaAdL+mgIR0CW+7k7OmiydX2UKGgGR0BuODHCGetkaAdL9WgIR0CW+8xrSE13dX2UKGgGR0BxN4pEx7AtaAdL8GgIR0CW/ZK7I1cddX2UKGgGR0BxS67xusLfaAdL92gIR0CW/wHU+cH4dX2UKGgGR0BweDHAAQxvaAdL5WgIR0CW/6Qrc0tRdX2UKGgGR0BytmPCEYfoaAdL/WgIR0CXAQ8uSOindX2UKGgGR0BxsXsE7nxKaAdL4mgIR0CXAWPOY6XCdX2UKGgGR0BhUR+8XenAaAdN6ANoCEdAlwGbILgGbHV9lChoBkdAb38KpDNQj2gHS9VoCEdAlwG0Rvm5lXV9lChoBkdAclo4X40uUWgHS+hoCEdAlwG1QZXMhXV9lChoBkdAcNuvXsgMdGgHS/JoCEdAlwHiqU/wAnV9lChoBkdAc16KTB68hGgHS/NoCEdAlwH/Bi1Aq3V9lChoBkdAb4WCuEEkjWgHS+ZoCEdAlwItMGorF3V9lChoBkdAcAvK+zt1IWgHS/VoCEdAlwJLY5DJEHV9lChoBkdAcRv0f5k9U2gHS/JoCEdAlwNCGrS3LHV9lChoBkdAcGuPWxyGSWgHTQQBaAhHQJcDrTLGJep1fZQoaAZHQHMeFct5D7ZoB0vNaAhHQJcECDmKZUl1fZQoaAZHQHKmFhsqJ/JoB0vNaAhHQJcFtqUNayN1fZQoaAZHQHLzX80k4WFoB0v1aAhHQJcGVA3T/hl1fZQoaAZHQHHwqJVKf4BoB0vVaAhHQJcH7g3tKI11fZQoaAZHQHBl4F3Y+StoB0voaAhHQJcIC5Gz8gp1fZQoaAZHQHJI1lGwzLxoB0vjaAhHQJcINCIDYAd1fZQoaAZHQG2Xhsyi22JoB0vtaAhHQJcIajpLVWl1fZQoaAZHQHCmLjT8YQ9oB0vwaAhHQJcImbrkbP11fZQoaAZHQHC2LbcoH9poB0vvaAhHQJcJFcjZ+QV1fZQoaAZHQHJWef29L6FoB00bAWgIR0CXCVksz2vjdX2UKGgGR0BzLlu3trsTaAdL1WgIR0CXCY3/Pw/gdX2UKGgGR0Bw17beuV5baAdNBAFoCEdAlwnNk8Rtg3V9lChoBkdAcUgjENvwVmgHTREBaAhHQJcJ2v0RODd1fZQoaAZHQHGhzNMXaaloB0vhaAhHQJcKRdWyTpx1fZQoaAZHQHCN0RzzVc5oB0vzaAhHQJcLJA0Kqn51fZQoaAZHQGFAucMEzO5oB03oA2gIR0CXDM384xUOdX2UKGgGR0Bwvy8BdUsGaAdL8GgIR0CXDXbExZdOdX2UKGgGR0ByBwIw/PgOaAdL0WgIR0CXDmy+Yc//dX2UKGgGR0BwzuNsFdLQaAdL1mgIR0CXDtMVk+X7dX2UKGgGR0BuVRm7J4jbaAdL32gIR0CXDt6Q/5ckdX2UKGgGR0BvO1zbN8mbaAdL4WgIR0CXD47xd6cBdX2UKGgGR0Bw1jKeTV2BaAdL42gIR0CXD+fbKzRhdX2UKGgGR0Bw15p1zQu3aAdL8mgIR0CXERpd8iOedX2UKGgGR0Bxd7iiqQzUaAdL9WgIR0CXEaHpr1ujdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}