|
import json
|
|
import os
|
|
|
|
|
|
config_data = {
|
|
"hidden_size": 768,
|
|
"num_attention_heads": 12,
|
|
"num_hidden_layers": 12,
|
|
"intermediate_size": 3072,
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"image_size": 224,
|
|
"image_channels": 3,
|
|
"patch_size": 16,
|
|
"max_position_embeddings": 512,
|
|
"vocab_size": 30522,
|
|
"type_vocab_size": 2,
|
|
"audio_sample_rate": 16000,
|
|
"audio_frame_size": 1024,
|
|
"audio_hop_size": 512,
|
|
"enable_vqa": True,
|
|
"enable_caption": True,
|
|
"enable_retrieval": True,
|
|
"enable_asr": True,
|
|
"enable_realtime_asr": True,
|
|
"batch_size": 32,
|
|
"learning_rate": 0.0001,
|
|
"weight_decay": 0.01,
|
|
"warmup_steps": 10000,
|
|
"max_steps": 100000
|
|
}
|
|
|
|
|
|
config_path = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\config.json"
|
|
|
|
|
|
os.makedirs(os.path.dirname(config_path), exist_ok=True)
|
|
with open(config_path, "w") as f:
|
|
json.dump(config_data, f, indent=4)
|
|
|
|
print(f"配置文件已保存到: {config_path}")
|
|
|
|
from transformers import BertTokenizer
|
|
import os
|
|
|
|
|
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
|
|
|
|
|
tokenizer_path = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\tokenizer"
|
|
os.makedirs(tokenizer_path, exist_ok=True)
|
|
tokenizer.save_pretrained(tokenizer_path)
|
|
|
|
print(f"分词器已保存到: {tokenizer_path}")
|
|
|
|
|
|
|
|
from model import Config
|
|
|
|
config_file = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\config.json"
|
|
config = Config(config_file)
|
|
print("加载的配置: ", config.__dict__)
|
|
|
|
from transformers import BertTokenizer
|
|
|
|
tokenizer_path = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\tokenizer"
|
|
tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
|
|
text = "Hello, how are you?"
|
|
encoded_input = tokenizer(text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
|
|
|
|
print("分词器输出: ", encoded_input["input_ids"].shape)
|
|
|