|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import os
|
|
|
|
class Config:
|
|
def __init__(self):
|
|
|
|
self.hidden_size = 768
|
|
self.num_attention_heads = 12
|
|
self.num_hidden_layers = 12
|
|
self.intermediate_size = 3072
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
|
|
|
|
self.image_size = 224
|
|
self.image_channels = 3
|
|
self.patch_size = 16
|
|
|
|
|
|
self.max_position_embeddings = 512
|
|
self.vocab_size = 30522
|
|
self.type_vocab_size = 2
|
|
|
|
|
|
self.audio_sample_rate = 16000
|
|
self.audio_frame_size = 1024
|
|
self.audio_hop_size = 512
|
|
|
|
|
|
self.enable_vqa = True
|
|
self.enable_caption = True
|
|
self.enable_retrieval = True
|
|
self.enable_asr = True
|
|
self.enable_realtime_asr = True
|
|
|
|
|
|
self.batch_size = 32
|
|
self.learning_rate = 1e-4
|
|
self.weight_decay = 0.01
|
|
self.warmup_steps = 10000
|
|
self.max_steps = 100000
|
|
|
|
|
|
class ImageEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super(ImageEncoder, self).__init__()
|
|
self.config = config
|
|
self.encoder_layer = nn.Sequential(
|
|
nn.Conv2d(3, 64, kernel_size=3),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2, 2),
|
|
nn.Flatten(),
|
|
nn.Linear(64 * 111 * 111, config.hidden_size)
|
|
)
|
|
|
|
def forward(self, image):
|
|
image_features = self.encoder_layer(image)
|
|
return image_features
|
|
|
|
class TextEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super(TextEncoder, self).__init__()
|
|
self.config = config
|
|
self.transformer_layer = nn.TransformerEncoderLayer(
|
|
d_model=config.hidden_size,
|
|
nhead=config.num_attention_heads,
|
|
batch_first=True
|
|
)
|
|
self.transformer_encoder = nn.TransformerEncoder(
|
|
self.transformer_layer,
|
|
num_layers=config.num_hidden_layers
|
|
)
|
|
|
|
def forward(self, text):
|
|
text_features = self.transformer_encoder(text).mean(dim=1)
|
|
return text_features
|
|
|
|
class AudioEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super(AudioEncoder, self).__init__()
|
|
self.config = config
|
|
self.encoder_layer = nn.Sequential(
|
|
nn.Linear(config.audio_sample_rate, config.hidden_size),
|
|
nn.ReLU(),
|
|
nn.Linear(config.hidden_size, config.hidden_size)
|
|
)
|
|
|
|
def forward(self, audio):
|
|
audio_features = self.encoder_layer(audio)
|
|
return audio_features
|
|
|
|
class FusionLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(FusionLayer, self).__init__()
|
|
self.config = config
|
|
self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size)
|
|
|
|
def forward(self, image_features, text_features, audio_features):
|
|
fused_features = torch.cat((image_features, text_features, audio_features), dim=1)
|
|
fused_features = self.fusion_layer(fused_features)
|
|
return fused_features
|
|
|
|
class VQALayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(VQALayer, self).__init__()
|
|
self.config = config
|
|
self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
|
|
|
def forward(self, fused_features):
|
|
vqa_output = self.vqa_layer(fused_features)
|
|
return vqa_output
|
|
|
|
class CaptionLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(CaptionLayer, self).__init__()
|
|
self.config = config
|
|
self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
|
|
|
def forward(self, fused_features):
|
|
caption_output = self.caption_layer(fused_features)
|
|
return caption_output
|
|
|
|
class RetrievalLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(RetrievalLayer, self).__init__()
|
|
self.config = config
|
|
self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
|
|
|
def forward(self, fused_features):
|
|
retrieval_output = self.retrieval_layer(fused_features)
|
|
return retrieval_output
|
|
|
|
class ASRLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(ASRLayer, self).__init__()
|
|
self.config = config
|
|
self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
|
|
|
def forward(self, fused_features):
|
|
asr_output = self.asr_layer(fused_features)
|
|
return asr_output
|
|
|
|
class RealtimeASRLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(RealtimeASRLayer, self).__init__()
|
|
self.config = config
|
|
self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
|
|
|
def forward(self, fused_features):
|
|
realtime_asr_output = self.realtime_asr_layer(fused_features)
|
|
return realtime_asr_output
|
|
|
|
|
|
class AutoModel(nn.Module):
|
|
def __init__(self, config):
|
|
super(AutoModel, self).__init__()
|
|
self.config = config
|
|
self.image_encoder = ImageEncoder(config)
|
|
self.text_encoder = TextEncoder(config)
|
|
self.audio_encoder = AudioEncoder(config)
|
|
self.fusion_layer = FusionLayer(config)
|
|
self.vqa_layer = VQALayer(config)
|
|
self.caption_layer = CaptionLayer(config)
|
|
self.retrieval_layer = RetrievalLayer(config)
|
|
self.asr_layer = ASRLayer(config)
|
|
self.realtime_asr_layer = RealtimeASRLayer(config)
|
|
|
|
def forward(self, image, text, audio):
|
|
image_features = self.image_encoder(image)
|
|
text_features = self.text_encoder(text)
|
|
audio_features = self.audio_encoder(audio)
|
|
fused_features = self.fusion_layer(image_features, text_features, audio_features)
|
|
vqa_output = self.vqa_layer(fused_features)
|
|
caption_output = self.caption_layer(fused_features)
|
|
retrieval_output = self.retrieval_layer(fused_features)
|
|
asr_output = self.asr_layer(fused_features)
|
|
realtime_asr_output = self.realtime_asr_layer(fused_features)
|
|
return vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output
|
|
|
|
|
|
config = Config()
|
|
model = AutoModel(config)
|
|
image = torch.randn(1, 3, 224, 224)
|
|
text = torch.randn(1, config.max_position_embeddings, config.hidden_size)
|
|
audio = torch.randn(1, config.audio_sample_rate)
|
|
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output = model(image, text, audio)
|
|
|
|
|
|
print("VQA output shape:", vqa_output.shape)
|
|
print("Caption output shape:", caption_output.shape)
|
|
print("Retrieval output shape:", retrieval_output.shape)
|
|
print("ASR output shape:", asr_output.shape)
|
|
print("Realtime ASR output shape:", realtime_asr_output.shape)
|
|
|
|
|
|
total_params = sum(p.numel() for p in model.parameters())
|
|
print(f"\n总参数数量: {total_params}")
|
|
|
|
|
|
save_dir = "./"
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
save_path = os.path.join(save_dir, "AutoModel.pth")
|
|
|
|
|
|
torch.save(model.state_dict(), save_path)
|
|
print(f"模型权重已保存到: {save_path}")
|
|
|
|
|
|
|
|
|
|
|