Delete multi_modal_model.py
Browse files- multi_modal_model.py +0 -172
multi_modal_model.py
DELETED
@@ -1,172 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.optim as optim
|
5 |
-
from transformers import (
|
6 |
-
BartForConditionalGeneration,
|
7 |
-
AutoModelForCausalLM,
|
8 |
-
BertModel,
|
9 |
-
Wav2Vec2Model,
|
10 |
-
CLIPModel,
|
11 |
-
AutoTokenizer
|
12 |
-
)
|
13 |
-
import numpy as np
|
14 |
-
import random
|
15 |
-
import copy
|
16 |
-
|
17 |
-
class MultiModalModel(nn.Module):
|
18 |
-
def __init__(self):
|
19 |
-
super(MultiModalModel, self).__init__()
|
20 |
-
# 初始化子模型
|
21 |
-
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
22 |
-
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
23 |
-
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
24 |
-
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
25 |
-
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
26 |
-
|
27 |
-
# 初始化分词器和处理器
|
28 |
-
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
29 |
-
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
30 |
-
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
31 |
-
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
32 |
-
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
33 |
-
|
34 |
-
def forward(self, task, inputs):
|
35 |
-
if task == 'text_generation':
|
36 |
-
attention_mask = inputs.attention_mask
|
37 |
-
outputs = self.text_generator.generate(
|
38 |
-
inputs.input_ids,
|
39 |
-
max_new_tokens=50,
|
40 |
-
pad_token_id=self.text_tokenizer.eos_token_id,
|
41 |
-
attention_mask=attention_mask,
|
42 |
-
top_p=0.95,
|
43 |
-
top_k=50,
|
44 |
-
temperature=1.2,
|
45 |
-
do_sample=True
|
46 |
-
)
|
47 |
-
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
-
elif task == 'code_generation':
|
49 |
-
attention_mask = inputs.attention_mask
|
50 |
-
outputs = self.code_generator.generate(
|
51 |
-
inputs.input_ids,
|
52 |
-
max_new_tokens=50,
|
53 |
-
pad_token_id=self.code_tokenizer.eos_token_id,
|
54 |
-
attention_mask=attention_mask,
|
55 |
-
top_p=0.95,
|
56 |
-
top_k=50,
|
57 |
-
temperature=1.2,
|
58 |
-
do_sample=True
|
59 |
-
)
|
60 |
-
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
-
elif task == 'text_understanding':
|
62 |
-
outputs = self.nlp_encoder(**inputs)
|
63 |
-
return outputs.last_hidden_state
|
64 |
-
elif task == 'speech_recognition':
|
65 |
-
outputs = self.speech_encoder(**inputs).logits
|
66 |
-
predicted_ids = torch.argmax(outputs, dim=-1)
|
67 |
-
transcription = self.speech_processor.batch_decode(predicted_ids)[0]
|
68 |
-
return transcription
|
69 |
-
elif task == 'vision_understanding':
|
70 |
-
outputs = self.vision_encoder.get_image_features(**inputs)
|
71 |
-
return outputs
|
72 |
-
|
73 |
-
def save_model(self, save_directory):
|
74 |
-
os.makedirs(save_directory, exist_ok=True)
|
75 |
-
torch.save(self.state_dict(), os.path.join(save_directory, 'multi_modal_model_state_dict.pth'))
|
76 |
-
self.text_tokenizer.save_pretrained(os.path.join(save_directory, 'text_generator'))
|
77 |
-
self.code_tokenizer.save_pretrained(os.path.join(save_directory, 'code_generator'))
|
78 |
-
self.nlp_tokenizer.save_pretrained(os.path.join(save_directory, 'nlp_encoder'))
|
79 |
-
self.speech_processor.save_pretrained(os.path.join(save_directory, 'speech_encoder'))
|
80 |
-
self.vision_processor.save_pretrained(os.path.join(save_directory, 'vision_encoder'))
|
81 |
-
|
82 |
-
def load_model(self, load_directory):
|
83 |
-
self.load_state_dict(torch.load(os.path.join(load_directory, 'multi_modal_model_state_dict.pth')))
|
84 |
-
self.text_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'text_generator'))
|
85 |
-
self.code_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'code_generator'))
|
86 |
-
self.nlp_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'nlp_encoder'))
|
87 |
-
self.speech_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'speech_encoder'))
|
88 |
-
self.vision_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'vision_encoder'))
|
89 |
-
|
90 |
-
class EvolutionaryMultiModalNetwork(nn.Module):
|
91 |
-
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
92 |
-
super(EvolutionaryMultiModalNetwork, self).__init__()
|
93 |
-
self.device = device
|
94 |
-
self.multi_modal_model = MultiModalModel().to(self.device)
|
95 |
-
self.mutation_params = {
|
96 |
-
'mutation_rate': 0.2, # 增加变异率
|
97 |
-
'mutation_scale': 0.05 # 增加变异幅度
|
98 |
-
}
|
99 |
-
|
100 |
-
def mutate_model(self, model):
|
101 |
-
"""
|
102 |
-
模型参数变异
|
103 |
-
"""
|
104 |
-
for param in model.parameters():
|
105 |
-
if param.requires_grad:
|
106 |
-
noise = torch.normal(
|
107 |
-
mean=torch.zeros_like(param.data),
|
108 |
-
std=self.mutation_params['mutation_scale']
|
109 |
-
).to(self.device)
|
110 |
-
if random.random() < self.mutation_params['mutation_rate']:
|
111 |
-
param.data.add_(noise)
|
112 |
-
return model
|
113 |
-
|
114 |
-
def evaluate_model(self, model, test_input):
|
115 |
-
"""
|
116 |
-
模型评估
|
117 |
-
"""
|
118 |
-
try:
|
119 |
-
with torch.no_grad():
|
120 |
-
output = model('text_generation', test_input)
|
121 |
-
complexity = sum(p.numel() for p in model.parameters())
|
122 |
-
performance = len(output) # 示例性能评估指标
|
123 |
-
return complexity, performance
|
124 |
-
except Exception as e:
|
125 |
-
print(f"模型评估错误: {e}")
|
126 |
-
return 0, 0
|
127 |
-
|
128 |
-
def save_models(self, save_dir='./model_checkpoints'):
|
129 |
-
"""
|
130 |
-
保存模型
|
131 |
-
"""
|
132 |
-
os.makedirs(save_dir, exist_ok=True)
|
133 |
-
self.multi_modal_model.save_model(os.path.join(save_dir, 'multi_modal_model'))
|
134 |
-
print(f"模型已保存到 {save_dir}")
|
135 |
-
|
136 |
-
def evolutionary_training(self, epochs=5):
|
137 |
-
"""
|
138 |
-
进化训练
|
139 |
-
"""
|
140 |
-
print("🧬 开始进化训练...")
|
141 |
-
|
142 |
-
for epoch in range(epochs):
|
143 |
-
print(f"\n🌟 第 {epoch+1} 代:")
|
144 |
-
|
145 |
-
# 模型变异
|
146 |
-
self.multi_modal_model = self.mutate_model(self.multi_modal_model)
|
147 |
-
|
148 |
-
# 模型评估
|
149 |
-
test_input = self.multi_modal_model.text_tokenizer("Sample input for evaluation.", return_tensors='pt').to(self.device)
|
150 |
-
complexity, performance = self.evaluate_model(self.multi_modal_model, test_input)
|
151 |
-
print(f"多模态模型 - 复杂度: {complexity}, 性能: {performance:.4f}")
|
152 |
-
|
153 |
-
def main():
|
154 |
-
# 设置随机种子
|
155 |
-
torch.manual_seed(42)
|
156 |
-
np.random.seed(42)
|
157 |
-
random.seed(42)
|
158 |
-
|
159 |
-
# 创建进化多模态神经网络
|
160 |
-
evo_network = EvolutionaryMultiModalNetwork()
|
161 |
-
|
162 |
-
# 打印模型信息
|
163 |
-
evo_network.multi_modal_model.text_generator.config # 打印模型配置示例
|
164 |
-
|
165 |
-
# 进化训练
|
166 |
-
evo_network.evolutionary_training(epochs=5)
|
167 |
-
|
168 |
-
# 保存模型
|
169 |
-
evo_network.save_models()
|
170 |
-
|
171 |
-
if __name__ == "__main__":
|
172 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|