zeroMN commited on
Commit
3d27098
·
verified ·
1 Parent(s): 7120259

Delete multi_modal_model.py

Browse files
Files changed (1) hide show
  1. multi_modal_model.py +0 -172
multi_modal_model.py DELETED
@@ -1,172 +0,0 @@
1
- import os
2
- import torch
3
- import torch.nn as nn
4
- import torch.optim as optim
5
- from transformers import (
6
- BartForConditionalGeneration,
7
- AutoModelForCausalLM,
8
- BertModel,
9
- Wav2Vec2Model,
10
- CLIPModel,
11
- AutoTokenizer
12
- )
13
- import numpy as np
14
- import random
15
- import copy
16
-
17
- class MultiModalModel(nn.Module):
18
- def __init__(self):
19
- super(MultiModalModel, self).__init__()
20
- # 初始化子模型
21
- self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
22
- self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
23
- self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
24
- self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
25
- self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
26
-
27
- # 初始化分词器和处理器
28
- self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
29
- self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
30
- self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
31
- self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
32
- self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
33
-
34
- def forward(self, task, inputs):
35
- if task == 'text_generation':
36
- attention_mask = inputs.attention_mask
37
- outputs = self.text_generator.generate(
38
- inputs.input_ids,
39
- max_new_tokens=50,
40
- pad_token_id=self.text_tokenizer.eos_token_id,
41
- attention_mask=attention_mask,
42
- top_p=0.95,
43
- top_k=50,
44
- temperature=1.2,
45
- do_sample=True
46
- )
47
- return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
48
- elif task == 'code_generation':
49
- attention_mask = inputs.attention_mask
50
- outputs = self.code_generator.generate(
51
- inputs.input_ids,
52
- max_new_tokens=50,
53
- pad_token_id=self.code_tokenizer.eos_token_id,
54
- attention_mask=attention_mask,
55
- top_p=0.95,
56
- top_k=50,
57
- temperature=1.2,
58
- do_sample=True
59
- )
60
- return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
61
- elif task == 'text_understanding':
62
- outputs = self.nlp_encoder(**inputs)
63
- return outputs.last_hidden_state
64
- elif task == 'speech_recognition':
65
- outputs = self.speech_encoder(**inputs).logits
66
- predicted_ids = torch.argmax(outputs, dim=-1)
67
- transcription = self.speech_processor.batch_decode(predicted_ids)[0]
68
- return transcription
69
- elif task == 'vision_understanding':
70
- outputs = self.vision_encoder.get_image_features(**inputs)
71
- return outputs
72
-
73
- def save_model(self, save_directory):
74
- os.makedirs(save_directory, exist_ok=True)
75
- torch.save(self.state_dict(), os.path.join(save_directory, 'multi_modal_model_state_dict.pth'))
76
- self.text_tokenizer.save_pretrained(os.path.join(save_directory, 'text_generator'))
77
- self.code_tokenizer.save_pretrained(os.path.join(save_directory, 'code_generator'))
78
- self.nlp_tokenizer.save_pretrained(os.path.join(save_directory, 'nlp_encoder'))
79
- self.speech_processor.save_pretrained(os.path.join(save_directory, 'speech_encoder'))
80
- self.vision_processor.save_pretrained(os.path.join(save_directory, 'vision_encoder'))
81
-
82
- def load_model(self, load_directory):
83
- self.load_state_dict(torch.load(os.path.join(load_directory, 'multi_modal_model_state_dict.pth')))
84
- self.text_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'text_generator'))
85
- self.code_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'code_generator'))
86
- self.nlp_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'nlp_encoder'))
87
- self.speech_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'speech_encoder'))
88
- self.vision_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'vision_encoder'))
89
-
90
- class EvolutionaryMultiModalNetwork(nn.Module):
91
- def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
92
- super(EvolutionaryMultiModalNetwork, self).__init__()
93
- self.device = device
94
- self.multi_modal_model = MultiModalModel().to(self.device)
95
- self.mutation_params = {
96
- 'mutation_rate': 0.2, # 增加变异率
97
- 'mutation_scale': 0.05 # 增加变异幅度
98
- }
99
-
100
- def mutate_model(self, model):
101
- """
102
- 模型参数变异
103
- """
104
- for param in model.parameters():
105
- if param.requires_grad:
106
- noise = torch.normal(
107
- mean=torch.zeros_like(param.data),
108
- std=self.mutation_params['mutation_scale']
109
- ).to(self.device)
110
- if random.random() < self.mutation_params['mutation_rate']:
111
- param.data.add_(noise)
112
- return model
113
-
114
- def evaluate_model(self, model, test_input):
115
- """
116
- 模型评估
117
- """
118
- try:
119
- with torch.no_grad():
120
- output = model('text_generation', test_input)
121
- complexity = sum(p.numel() for p in model.parameters())
122
- performance = len(output) # 示例性能评估指标
123
- return complexity, performance
124
- except Exception as e:
125
- print(f"模型评估错误: {e}")
126
- return 0, 0
127
-
128
- def save_models(self, save_dir='./model_checkpoints'):
129
- """
130
- 保存模型
131
- """
132
- os.makedirs(save_dir, exist_ok=True)
133
- self.multi_modal_model.save_model(os.path.join(save_dir, 'multi_modal_model'))
134
- print(f"模型已保存到 {save_dir}")
135
-
136
- def evolutionary_training(self, epochs=5):
137
- """
138
- 进化训练
139
- """
140
- print("🧬 开始进化训练...")
141
-
142
- for epoch in range(epochs):
143
- print(f"\n🌟 第 {epoch+1} 代:")
144
-
145
- # 模型变异
146
- self.multi_modal_model = self.mutate_model(self.multi_modal_model)
147
-
148
- # 模型评估
149
- test_input = self.multi_modal_model.text_tokenizer("Sample input for evaluation.", return_tensors='pt').to(self.device)
150
- complexity, performance = self.evaluate_model(self.multi_modal_model, test_input)
151
- print(f"多模态模型 - 复杂度: {complexity}, 性能: {performance:.4f}")
152
-
153
- def main():
154
- # 设置随机种子
155
- torch.manual_seed(42)
156
- np.random.seed(42)
157
- random.seed(42)
158
-
159
- # 创建进化多模态神经网络
160
- evo_network = EvolutionaryMultiModalNetwork()
161
-
162
- # 打印模型信息
163
- evo_network.multi_modal_model.text_generator.config # 打印模型配置示例
164
-
165
- # 进化训练
166
- evo_network.evolutionary_training(epochs=5)
167
-
168
- # 保存模型
169
- evo_network.save_models()
170
-
171
- if __name__ == "__main__":
172
- main()