--- base_model: Snowflake/snowflake-arctic-embed-m datasets: [] language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1490 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: What is the RESOURCE NAME for the kubernetes-cluster in the ZenML documentation? sentences: - ' ┃┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ RESOURCE TYPES │ 🌀 kubernetes-cluster ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ RESOURCE NAME │ arn:aws:eks:us-east-1:715803424590:cluster/zenhacks-cluster ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ SECRET ID │ ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ SESSION DURATION │ N/A ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ EXPIRES IN │ 11h59m57s ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ OWNER │ default ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ WORKSPACE │ default ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ SHARED │ ➖ ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ CREATED_AT │ 2023-06-16 10:17:46.931091 ┃ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨ ┃ UPDATED_AT │ 2023-06-16 10:17:46.931094 ┃ ┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ Configuration' - 'urns it with the configuration of the cloud stack.Based on the stack info and pipeline specification, the client builds and pushes an image to the container registry. The image contains the environment needed to execute the pipeline and the code of the steps. The client creates a run in the orchestrator. For example, in the case of the Skypilot orchestrator, it creates a virtual machine in the cloud with some commands to pull and run a Docker image from the specified container registry. The orchestrator pulls the appropriate image from the container registry as it''s executing the pipeline (each step has an image). As each pipeline runs, it stores artifacts physically in the artifact store. Of course, this artifact store needs to be some form of cloud storage. As each pipeline runs, it reports status back to the ZenML server and optionally queries the server for metadata. Provisioning and registering a Skypilot orchestrator alongside a container registry While there are detailed docs on how to set up a Skypilot orchestrator and a container registry on each public cloud, we have put the most relevant details here for convenience: In order to launch a pipeline on AWS with the SkyPilot orchestrator, the first thing that you need to do is to install the AWS and Skypilot integrations: zenml integration install aws skypilot_aws -y Before we start registering any components, there is another step that we have to execute. As we explained in the previous section, components such as orchestrators and container registries often require you to set up the right permissions. In ZenML, this process is simplified with the use of Service Connectors. For this example, we need to use the IAM role authentication method of our AWS service connector: AWS_PROFILE= zenml service-connector register cloud_connector --type aws --auto-configure Once the service connector is set up, we can register a Skypilot orchestrator: zenml orchestrator register skypilot_orchestrator -f vm_aws' - 'pose -f /path/to/docker-compose.yml -p zenml up -dYou need to visit the ZenML dashboard at http://localhost:8080 to activate the server by creating an initial admin account. You can then connect your client to the server with the web login flow: zenml connect --url http://localhost:8080 Tearing down the installation is as simple as running: docker-compose -p zenml down Database backup and recovery An automated database backup and recovery feature is enabled by default for all Docker deployments. The ZenML server will automatically back up the database in-memory before every database schema migration and restore it if the migration fails. The database backup automatically created by the ZenML server is only temporary and only used as an immediate recovery in case of database migration failures. It is not meant to be used as a long-term backup solution. If you need to back up your database for long-term storage, you should use a dedicated backup solution. Several database backup strategies are supported, depending on where and how the backup is stored. The strategy can be configured by means of the ZENML_STORE_BACKUP_STRATEGY environment variable: disabled - no backup is performed in-memory - the database schema and data are stored in memory. This is the fastest backup strategy, but the backup is not persisted across container restarts, so no manual intervention is possible in case the automatic DB recovery fails after a failed DB migration. Adequate memory resources should be allocated to the ZenML server container when using this backup strategy with larger databases. This is the default backup strategy.' - source_sentence: What are the benefits of deploying ZenML to a production environment? sentences: - 'graph that includes custom TRANSFORMER and ROUTER.If you are looking for a more easy way to deploy your models locally, you can use the MLflow Model Deployer flavor. How to deploy it? ZenML provides a Seldon Core flavor build on top of the Seldon Core Integration to allow you to deploy and use your models in a production-grade environment. In order to use the integration you need to install it on your local machine to be able to register a Seldon Core Model deployer with ZenML and add it to your stack: zenml integration install seldon -y To deploy and make use of the Seldon Core integration we need to have the following prerequisites: access to a Kubernetes cluster. This can be configured using the kubernetes_context configuration attribute to point to a local kubectl context or an in-cluster configuration, but the recommended approach is to use a Service Connector to link the Seldon Deployer Stack Component to a Kubernetes cluster. Seldon Core needs to be preinstalled and running in the target Kubernetes cluster. Check out the official Seldon Core installation instructions or the EKS installation example below. models deployed with Seldon Core need to be stored in some form of persistent shared storage that is accessible from the Kubernetes cluster where Seldon Core is installed (e.g. AWS S3, GCS, Azure Blob Storage, etc.). You can use one of the supported remote artifact store flavors to store your models as part of your stack. For a smoother experience running Seldon Core with a cloud artifact store, we also recommend configuring explicit credentials for the artifact store. The Seldon Core model deployer knows how to automatically convert those credentials in the format needed by Seldon Core model servers to authenticate to the storage back-end where models are stored. Since the Seldon Model Deployer is interacting with the Seldon Core model server deployed on a Kubernetes cluster, you need to provide a set of configuration parameters. These parameters are:' - 'S Secrets Manager accounts or regions may be used.Always make sure that the backup Secrets Store is configured to use a different location than the primary Secrets Store. The location can be different in terms of the Secrets Store back-end type (e.g. internal database vs. AWS Secrets Manager) or the actual location of the Secrets Store back-end (e.g. different AWS Secrets Manager account or region, GCP Secret Manager project or Azure Key Vault''s vault). Using the same location for both the primary and backup Secrets Store will not provide any additional benefits and may even result in unexpected behavior. When a backup secrets store is in use, the ZenML Server will always attempt to read and write secret values from/to the primary Secrets Store first while ensuring to keep the backup Secrets Store in sync. If the primary Secrets Store is unreachable, if the secret values are not found there or any otherwise unexpected error occurs, the ZenML Server falls back to reading and writing from/to the backup Secrets Store. Only if the backup Secrets Store is also unavailable, the ZenML Server will return an error. In addition to the hidden backup operations, users can also explicitly trigger a backup operation by using the zenml secret backup CLI command. This command will attempt to read all secrets from the primary Secrets Store and write them to the backup Secrets Store. Similarly, the zenml secret restore CLI command can be used to restore secrets from the backup Secrets Store to the primary Secrets Store. These CLI commands are useful for migrating secrets from one Secrets Store to another. Secrets migration strategy Sometimes you may need to change the external provider or location where secrets values are stored by the Secrets Store. The immediate implication of this is that the ZenML server will no longer be able to access existing secrets with the new configuration until they are also manually copied to the new location. Some examples of such changes include:' - '🤔Deploying ZenML Why do we need to deploy ZenML? Moving your ZenML Server to a production environment offers several benefits over staying local: Scalability: Production environments are designed to handle large-scale workloads, allowing your models to process more data and deliver faster results. Reliability: Production-grade infrastructure ensures high availability and fault tolerance, minimizing downtime and ensuring consistent performance. Collaboration: A shared production environment enables seamless collaboration between team members, making it easier to iterate on models and share insights. Despite these advantages, transitioning to production can be challenging due to the complexities involved in setting up the needed infrastructure. ZenML Server When you first get started with ZenML, it relies with the following architecture on your machine. The SQLite database that you can see in this diagram is used to store information about pipelines, pipeline runs, stacks, and other configurations. Users can run the zenml up command to spin up a local REST server to serve the dashboard. The diagram for this looks as follows: In Scenario 2, the zenml up command implicitly connects the client to the server. Currently the ZenML server supports a legacy and a brand-new version of the dashboard. To use the legacy version simply use the following command zenml up --legacy In order to move into production, the ZenML server needs to be deployed somewhere centrally so that the different cloud stack components can read from and write to the server. Additionally, this also allows all your team members to connect to it and share stacks and pipelines. Deploying a ZenML Server' - source_sentence: What is the tenant_id value in the configuration section? sentences: - '─────────────────────────────────────────────────┨┃ OWNER │ default ┃ ┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨ ┃ WORKSPACE │ default ┃ ┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨ ┃ SHARED │ ➖ ┃ ┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨ ┃ CREATED_AT │ 2023-06-20 19:16:26.802374 ┃ ┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨ ┃ UPDATED_AT │ 2023-06-20 19:16:26.802378 ┃ ┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ Configuration ┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ PROPERTY │ VALUE ┃ ┠───────────────┼──────────────────────────────────────┨ ┃ tenant_id │ a79ff333-8f45-4a74-a42e-68871c17b7fb ┃ ┠───────────────┼──────────────────────────────────────┨ ┃ client_id │ 8926254a-8c3f-430a-a2fd-bdab234d491e ┃ ┠───────────────┼──────────────────────────────────────┨ ┃ client_secret │ [HIDDEN] ┃ ┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ Azure Access Token Uses temporary Azure access tokens explicitly configured by the user or auto-configured from a local environment.' - ' should pick the one that best fits your use case.If you already have one or more GCP Service Connectors configured in your ZenML deployment, you can check which of them can be used to access generic GCP resources like the GCP Image Builder required for your GCP Image Builder by running e.g.: zenml service-connector list-resources --resource-type gcp-generic Example Command Output The following ''gcp-generic'' resources can be accessed by service connectors configured in your workspace: ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓ ┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE │ RESOURCE TYPE │ RESOURCE NAMES ┃ ┠──────────────────────────────────────┼────────────────┼────────────────┼────────────────┼────────────────┨ ┃ bfdb657d-d808-47e7-9974-9ba6e4919d83 │ gcp-generic │ 🔵 gcp │ 🔵 gcp-generic │ zenml-core ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛ After having set up or decided on a GCP Service Connector to use to authenticate to GCP, you can register the GCP Image Builder as follows: zenml image-builder register \ --flavor=gcp \ --cloud_builder_image= \ --network= \ --build_timeout= # Connect the GCP Image Builder to GCP via a GCP Service Connector zenml image-builder connect -i A non-interactive version that connects the GCP Image Builder to a target GCP Service Connector: zenml image-builder connect --connector Example Command Output $ zenml image-builder connect gcp-image-builder --connector gcp-generic Successfully connected image builder `gcp-image-builder` to the following resources: ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓' - 'gistry or even more than one type of AWS resource:zenml service-connector register --type aws -i A non-interactive CLI example that leverages the AWS CLI configuration on your local machine to auto-configure an AWS Service Connector targeting an ECR registry is: zenml service-connector register --type aws --resource-type docker-registry --auto-configure Example Command Output $ zenml service-connector register aws-us-east-1 --type aws --resource-type docker-registry --auto-configure ⠸ Registering service connector ''aws-us-east-1''... Successfully registered service connector `aws-us-east-1` with access to the following resources: ┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ RESOURCE TYPE │ RESOURCE NAMES ┃ ┠────────────────────┼──────────────────────────────────────────────┨ ┃ 🐳 docker-registry │ 715803424590.dkr.ecr.us-east-1.amazonaws.com ┃ ┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ Note: Please remember to grant the entity associated with your AWS credentials permissions to read and write to one or more ECR repositories as well as to list accessible ECR repositories. For a full list of permissions required to use an AWS Service Connector to access an ECR registry, please refer to the AWS Service Connector ECR registry resource type documentation or read the documentation available in the interactive CLI commands and dashboard. The AWS Service Connector supports many different authentication methods with different levels of security and convenience. You should pick the one that best fits your use case. If you already have one or more AWS Service Connectors configured in your ZenML deployment, you can check which of them can be used to access the ECR registry you want to use for your AWS Container Registry by running e.g.: zenml service-connector list-resources --connector-type aws --resource-type docker-registry Example Command Output' - source_sentence: How can I customize the Docker settings for individual steps in a ZenML pipeline? sentences: - '🌎Environment Variables How to control ZenML behavior with environmental variables. There are a few pre-defined environmental variables that can be used to control the behavior of ZenML. See the list below with default values and options: Logging verbosity export ZENML_LOGGING_VERBOSITY=INFO Choose from INFO, WARN, ERROR, CRITICAL, DEBUG. Disable step logs Usually, ZenML stores step logs in the artifact store, but this can sometimes cause performance bottlenecks, especially if the code utilizes progress bars. If you want to configure whether logged output from steps is stored or not, set the ZENML_DISABLE_STEP_LOGS_STORAGE environment variable to true. Note that this will mean that logs from your steps will no longer be stored and thus won''t be visible on the dashboard anymore. export ZENML_DISABLE_STEP_LOGS_STORAGE=false ZenML repository path To configure where ZenML will install and look for its repository, set the environment variable ZENML_REPOSITORY_PATH. export ZENML_REPOSITORY_PATH=/path/to/somewhere Analytics Please see our full page on what analytics are tracked and how you can opt out, but the quick summary is that you can set this to false if you want to opt out of analytics. export ZENML_ANALYTICS_OPT_IN=false Debug mode Setting to true switches to developer mode: export ZENML_DEBUG=true Active stack Setting the ZENML_ACTIVE_STACK_ID to a specific UUID will make the corresponding stack the active stack: export ZENML_ACTIVE_STACK_ID= Prevent pipeline execution When true, this prevents a pipeline from executing: export ZENML_PREVENT_PIPELINE_EXECUTION=false Disable rich traceback Set to false to disable the rich traceback: export ZENML_ENABLE_RICH_TRACEBACK=true Disable colourful logging If you wish to disable colourful logging, set the following environment variable: ZENML_LOGGING_COLORS_DISABLED=true' - 'pd.Series(model.predict(data)) return predictionsHowever, this approach has the downside that if the step is cached, then it could lead to unexpected results. You could simply disable the cache in the above step or the corresponding pipeline. However, one other way of achieving this would be to resolve the artifact at the pipeline level: from typing_extensions import Annotated from zenml import get_pipeline_context, pipeline, Model from zenml.enums import ModelStages import pandas as pd from sklearn.base import ClassifierMixin @step def predict( model: ClassifierMixin, data: pd.DataFrame, ) -> Annotated[pd.Series, "predictions"]: predictions = pd.Series(model.predict(data)) return predictions @pipeline( model=Model( name="iris_classifier", # Using the production stage version=ModelStages.PRODUCTION, ), def do_predictions(): # model name and version are derived from pipeline context model = get_pipeline_context().model inference_data = load_data() predict( # Here, we load in the `trained_model` from a trainer step model=model.get_model_artifact("trained_model"), data=inference_data, if __name__ == "__main__": do_predictions() Ultimately, both approaches are fine. You should decide which one to use based on your own preferences. PreviousLoad artifacts into memory NextVisualizing artifacts Last updated 15 days ago' - 'Docker settings on a step You have the option to customize the Docker settings at a step level. By default every step of a pipeline uses the same Docker image that is defined at the pipeline level. Sometimes your steps will have special requirements that make it necessary to define a different Docker image for one or many steps. This can easily be accomplished by adding the DockerSettings to the step decorator directly. from zenml import step from zenml.config import DockerSettings @step( settings={ "docker": DockerSettings( parent_image="pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime" def training(...): ... Alternatively, this can also be done within the configuration file. steps: training: settings: docker: parent_image: pytorch/pytorch:2.2.0-cuda11.8-cudnn8-runtime required_integrations: gcp github requirements: zenml # Make sure to include ZenML for other parent images numpy PreviousDocker settings on a pipeline NextSpecify pip dependencies and apt packages Last updated 19 days ago' - source_sentence: How do I configure the Kubernetes Service Connector to connect ZenML to Kubernetes clusters? sentences: - 'Kubernetes Service Connector Configuring Kubernetes Service Connectors to connect ZenML to Kubernetes clusters. The ZenML Kubernetes service connector facilitates authenticating and connecting to a Kubernetes cluster. The connector can be used to access to any generic Kubernetes cluster by providing pre-authenticated Kubernetes python clients to Stack Components that are linked to it and also allows configuring the local Kubernetes CLI (i.e. kubectl). Prerequisites The Kubernetes Service Connector is part of the Kubernetes ZenML integration. You can either install the entire integration or use a pypi extra to install it independently of the integration: pip install "zenml[connectors-kubernetes]" installs only prerequisites for the Kubernetes Service Connector Type zenml integration install kubernetes installs the entire Kubernetes ZenML integration A local Kubernetes CLI (i.e. kubectl ) and setting up local kubectl configuration contexts is not required to access Kubernetes clusters in your Stack Components through the Kubernetes Service Connector. $ zenml service-connector list-types --type kubernetes ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━┯━━━━━━━━┓ ┃ NAME │ TYPE │ RESOURCE TYPES │ AUTH METHODS │ LOCAL │ REMOTE ┃ ┠──────────────────────────────┼───────────────┼───────────────────────┼──────────────┼───────┼────────┨ ┃ Kubernetes Service Connector │ 🌀 kubernetes │ 🌀 kubernetes-cluster │ password │ ✅ │ ✅ ┃ ┃ │ │ │ token │ │ ┃ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━━┛ Resource Types The Kubernetes Service Connector only supports authenticating to and granting access to a generic Kubernetes cluster. This type of resource is identified by the kubernetes-cluster Resource Type.' - 'to the container registry. Authentication MethodsIntegrating and using an Azure Container Registry in your pipelines is not possible without employing some form of authentication. If you''re looking for a quick way to get started locally, you can use the Local Authentication method. However, the recommended way to authenticate to the Azure cloud platform is through an Azure Service Connector. This is particularly useful if you are configuring ZenML stacks that combine the Azure Container Registry with other remote stack components also running in Azure. This method uses the Docker client authentication available in the environment where the ZenML code is running. On your local machine, this is the quickest way to configure an Azure Container Registry. You don''t need to supply credentials explicitly when you register the Azure Container Registry, as it leverages the local credentials and configuration that the Azure CLI and Docker client store on your local machine. However, you will need to install and set up the Azure CLI on your machine as a prerequisite, as covered in the Azure CLI documentation, before you register the Azure Container Registry. With the Azure CLI installed and set up with credentials, you need to login to the container registry so Docker can pull and push images: # Fill your REGISTRY_NAME in the placeholder in the following command. # You can find the REGISTRY_NAME as part of your registry URI: `.azurecr.io` az acr login --name= Stacks using the Azure Container Registry set up with local authentication are not portable across environments. To make ZenML pipelines fully portable, it is recommended to use an Azure Service Connector to link your Azure Container Registry to the remote ACR registry.' - 'he Post-execution workflow has changed as follows:The get_pipelines and get_pipeline methods have been moved out of the Repository (i.e. the new Client ) class and lie directly in the post_execution module now. To use the user has to do: from zenml.post_execution import get_pipelines, get_pipeline New methods to directly get a run have been introduced: get_run and get_unlisted_runs method has been introduced to get unlisted runs. Usage remains largely similar. Please read the new docs for post-execution to inform yourself of what further has changed. How to migrate: Replace all post-execution workflows from the paradigm of Repository.get_pipelines or Repository.get_pipeline_run to the corresponding post_execution methods. 📡Future Changes While this rehaul is big and will break previous releases, we do have some more work left to do. However we also expect this to be the last big rehaul of ZenML before our 1.0.0 release, and no other release will be so hard breaking as this one. Currently planned future breaking changes are: Following the metadata store, the secrets manager stack component might move out of the stack. ZenML StepContext might be deprecated. 🐞 Reporting Bugs While we have tried our best to document everything that has changed, we realize that mistakes can be made and smaller changes overlooked. If this is the case, or you encounter a bug at any time, the ZenML core team and community are available around the clock on the growing Slack community. For bug reports, please also consider submitting a GitHub Issue. Lastly, if the new changes have left you desiring a feature, then consider adding it to our public feature voting board. Before doing so, do check what is already on there and consider upvoting the features you desire the most. PreviousMigration guide NextMigration guide 0.23.0 → 0.30.0 Last updated 12 days ago' model-index: - name: zenml/finetuned-snowflake-arctic-embed-m results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 384 type: dim_384 metrics: - type: cosine_accuracy@1 value: 0.3614457831325301 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6024096385542169 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6987951807228916 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7831325301204819 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3614457831325301 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2008032128514056 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1397590361445783 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07831325301204817 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3614457831325301 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6024096385542169 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6987951807228916 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7831325301204819 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5756072832948543 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5091365461847391 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5165480061197206 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.3674698795180723 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6144578313253012 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6987951807228916 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7710843373493976 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3674698795180723 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2048192771084337 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1397590361445783 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07710843373493974 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3674698795180723 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6144578313253012 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6987951807228916 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7710843373493976 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5732430988480587 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.509569229298145 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5167702755195493 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.29518072289156627 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5542168674698795 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6506024096385542 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7469879518072289 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.29518072289156627 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18473895582329317 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1301204819277108 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07469879518072288 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.29518072289156627 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5542168674698795 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6506024096385542 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7469879518072289 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5199227959343978 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.44722939376553855 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4541483656933914 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.28313253012048195 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5180722891566265 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5843373493975904 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6746987951807228 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.28313253012048195 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17269076305220882 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11686746987951806 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06746987951807228 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.28313253012048195 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5180722891566265 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5843373493975904 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6746987951807228 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.47987356927913916 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4177519602218399 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4261749847732839 name: Cosine Map@100 --- # zenml/finetuned-snowflake-arctic-embed-m This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m") # Run inference sentences = [ 'How do I configure the Kubernetes Service Connector to connect ZenML to Kubernetes clusters?', 'Kubernetes Service Connector\n\nConfiguring Kubernetes Service Connectors to connect ZenML to Kubernetes clusters.\n\nThe ZenML Kubernetes service connector facilitates authenticating and connecting to a Kubernetes cluster. The connector can be used to access to any generic Kubernetes cluster by providing pre-authenticated Kubernetes python clients to Stack Components that are linked to it and also allows configuring the local Kubernetes CLI (i.e. kubectl).\n\nPrerequisites\n\nThe Kubernetes Service Connector is part of the Kubernetes ZenML integration. You can either install the entire integration or use a pypi extra to install it independently of the integration:\n\npip install "zenml[connectors-kubernetes]" installs only prerequisites for the Kubernetes Service Connector Type\n\nzenml integration install kubernetes installs the entire Kubernetes ZenML integration\n\nA local Kubernetes CLI (i.e. kubectl ) and setting up local kubectl configuration contexts is not required to access Kubernetes clusters in your Stack Components through the Kubernetes Service Connector.\n\n$ zenml service-connector list-types --type kubernetes\n\n┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━┯━━━━━━━━┓\n\n┃ NAME │ TYPE │ RESOURCE TYPES │ AUTH METHODS │ LOCAL │ REMOTE ┃\n\n┠──────────────────────────────┼───────────────┼───────────────────────┼──────────────┼───────┼────────┨\n\n┃ Kubernetes Service Connector │ 🌀 kubernetes │ 🌀 kubernetes-cluster │ password │ ✅ │ ✅ ┃\n\n┃ │ │ │ token │ │ ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━━┛\n\nResource Types\n\nThe Kubernetes Service Connector only supports authenticating to and granting access to a generic Kubernetes cluster. This type of resource is identified by the kubernetes-cluster Resource Type.', 'he Post-execution workflow has changed as follows:The get_pipelines and get_pipeline methods have been moved out of the Repository (i.e. the new Client ) class and lie directly in the post_execution module now. To use the user has to do:\n\nfrom zenml.post_execution import get_pipelines, get_pipeline\n\nNew methods to directly get a run have been introduced: get_run and get_unlisted_runs method has been introduced to get unlisted runs.\n\nUsage remains largely similar. Please read the new docs for post-execution to inform yourself of what further has changed.\n\nHow to migrate: Replace all post-execution workflows from the paradigm of Repository.get_pipelines or Repository.get_pipeline_run to the corresponding post_execution methods.\n\n📡Future Changes\n\nWhile this rehaul is big and will break previous releases, we do have some more work left to do. However we also expect this to be the last big rehaul of ZenML before our 1.0.0 release, and no other release will be so hard breaking as this one. Currently planned future breaking changes are:\n\nFollowing the metadata store, the secrets manager stack component might move out of the stack.\n\nZenML StepContext might be deprecated.\n\n🐞 Reporting Bugs\n\nWhile we have tried our best to document everything that has changed, we realize that mistakes can be made and smaller changes overlooked. If this is the case, or you encounter a bug at any time, the ZenML core team and community are available around the clock on the growing Slack community.\n\nFor bug reports, please also consider submitting a GitHub Issue.\n\nLastly, if the new changes have left you desiring a feature, then consider adding it to our public feature voting board. Before doing so, do check what is already on there and consider upvoting the features you desire the most.\n\nPreviousMigration guide\n\nNextMigration guide 0.23.0 → 0.30.0\n\nLast updated 12 days ago', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_384` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3614 | | cosine_accuracy@3 | 0.6024 | | cosine_accuracy@5 | 0.6988 | | cosine_accuracy@10 | 0.7831 | | cosine_precision@1 | 0.3614 | | cosine_precision@3 | 0.2008 | | cosine_precision@5 | 0.1398 | | cosine_precision@10 | 0.0783 | | cosine_recall@1 | 0.3614 | | cosine_recall@3 | 0.6024 | | cosine_recall@5 | 0.6988 | | cosine_recall@10 | 0.7831 | | cosine_ndcg@10 | 0.5756 | | cosine_mrr@10 | 0.5091 | | **cosine_map@100** | **0.5165** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3675 | | cosine_accuracy@3 | 0.6145 | | cosine_accuracy@5 | 0.6988 | | cosine_accuracy@10 | 0.7711 | | cosine_precision@1 | 0.3675 | | cosine_precision@3 | 0.2048 | | cosine_precision@5 | 0.1398 | | cosine_precision@10 | 0.0771 | | cosine_recall@1 | 0.3675 | | cosine_recall@3 | 0.6145 | | cosine_recall@5 | 0.6988 | | cosine_recall@10 | 0.7711 | | cosine_ndcg@10 | 0.5732 | | cosine_mrr@10 | 0.5096 | | **cosine_map@100** | **0.5168** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.2952 | | cosine_accuracy@3 | 0.5542 | | cosine_accuracy@5 | 0.6506 | | cosine_accuracy@10 | 0.747 | | cosine_precision@1 | 0.2952 | | cosine_precision@3 | 0.1847 | | cosine_precision@5 | 0.1301 | | cosine_precision@10 | 0.0747 | | cosine_recall@1 | 0.2952 | | cosine_recall@3 | 0.5542 | | cosine_recall@5 | 0.6506 | | cosine_recall@10 | 0.747 | | cosine_ndcg@10 | 0.5199 | | cosine_mrr@10 | 0.4472 | | **cosine_map@100** | **0.4541** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.2831 | | cosine_accuracy@3 | 0.5181 | | cosine_accuracy@5 | 0.5843 | | cosine_accuracy@10 | 0.6747 | | cosine_precision@1 | 0.2831 | | cosine_precision@3 | 0.1727 | | cosine_precision@5 | 0.1169 | | cosine_precision@10 | 0.0675 | | cosine_recall@1 | 0.2831 | | cosine_recall@3 | 0.5181 | | cosine_recall@5 | 0.5843 | | cosine_recall@10 | 0.6747 | | cosine_ndcg@10 | 0.4799 | | cosine_mrr@10 | 0.4178 | | **cosine_map@100** | **0.4262** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,490 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details |
  • min: 9 tokens
  • mean: 21.2 tokens
  • max: 49 tokens
|
  • min: 21 tokens
  • mean: 376.51 tokens
  • max: 512 tokens
| * Samples: | positive | anchor | |:--------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | How is the verification process different for multi-instance and single-instance Service Connectors? | ing resources:

┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓┃ RESOURCE TYPE │ RESOURCE NAMES ┃

┠───────────────┼────────────────┨

┃ 📦 s3-bucket │ s3://zenfiles ┃

┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛

The following might help understand the difference between scopes:

the difference between a multi-instance and a multi-type Service Connector is that the Resource Type scope is locked to a particular value during configuration for the multi-instance Service Connector

similarly, the difference between a multi-instance and a multi-type Service Connector is that the Resource Name (Resource ID) scope is locked to a particular value during configuration for the single-instance Service Connector

Service Connector Verification

When registering Service Connectors, the authentication configuration and credentials are automatically verified to ensure that they can indeed be used to gain access to the target resources:

for multi-type Service Connectors, this verification means checking that the configured credentials can be used to authenticate successfully to the remote service, as well as listing all resources that the credentials have permission to access for each Resource Type supported by the Service Connector Type.

for multi-instance Service Connectors, this verification step means listing all resources that the credentials have permission to access in addition to validating that the credentials can be used to authenticate to the target service or platform.

for single-instance Service Connectors, the verification step simply checks that the configured credentials have permission to access the target resource.

The verification can also be performed later on an already registered Service Connector. Furthermore, for multi-type and multi-instance Service Connectors, the verification operation can be scoped to a Resource Type and a Resource Name.

The following shows how a multi-type, a multi-instance and a single-instance Service Connector can be verified with multiple scopes after registration.
| | What are the benefits of using the SkyPilot VM Orchestrator in ZenML for running machine learning workloads? | Skypilot VM Orchestrator

Orchestrating your pipelines to run on VMs using SkyPilot.

The SkyPilot VM Orchestrator is an integration provided by ZenML that allows you to provision and manage virtual machines (VMs) on any cloud provider supported by the SkyPilot framework. This integration is designed to simplify the process of running machine learning workloads on the cloud, offering cost savings, high GPU availability, and managed execution, We recommend using the SkyPilot VM Orchestrator if you need access to GPUs for your workloads, but don't want to deal with the complexities of managing cloud infrastructure or expensive managed solutions.

This component is only meant to be used within the context of a remote ZenML deployment scenario. Usage with a local ZenML deployment may lead to unexpected behavior!

SkyPilot VM Orchestrator is currently supported only for Python 3.8 and 3.9.

When to use it

You should use the SkyPilot VM Orchestrator if:

you want to maximize cost savings by leveraging spot VMs and auto-picking the cheapest VM/zone/region/cloud.

you want to ensure high GPU availability by provisioning VMs in all zones/regions/clouds you have access to.

you don't need a built-in UI of the orchestrator. (You can still use ZenML's Dashboard to view and monitor your pipelines/artifacts.)

you're not willing to maintain Kubernetes-based solutions or pay for managed solutions like Sagemaker.

How it works

The orchestrator leverages the SkyPilot framework to handle the provisioning and scaling of VMs. It automatically manages the process of launching VMs for your pipelines, with support for both on-demand and managed spot VMs. While you can select the VM type you want to use, the orchestrator also includes an optimizer that automatically selects the cheapest VM/zone/region/cloud for your workloads. Finally, the orchestrator includes an autostop feature that cleans up idle clusters, preventing unnecessary cloud costs.
| | How do I register a GCS Artifact Store using the ZenML CLI? | se Python <3.11 together with the GCP integration.The GCS Artifact Store flavor is provided by the GCP ZenML integration, you need to install it on your local machine to be able to register a GCS Artifact Store and add it to your stack:

zenml integration install gcp -y

The only configuration parameter mandatory for registering a GCS Artifact Store is the root path URI, which needs to point to a GCS bucket and take the form gs://bucket-name. Please read the Google Cloud Storage documentation on how to configure a GCS bucket.

With the URI to your GCS bucket known, registering a GCS Artifact Store can be done as follows:

# Register the GCS artifact store

zenml artifact-store register gs_store -f gcp --path=gs://bucket-name

# Register and set a stack with the new artifact store

zenml stack register custom_stack -a gs_store ... --set

Depending on your use case, however, you may also need to provide additional configuration parameters pertaining to authentication to match your deployment scenario.

Infrastructure Deployment

A GCS Artifact Store can be deployed directly from the ZenML CLI:

zenml artifact-store deploy gcs_artifact_store --flavor=gcp --provider=gcp ...

You can pass other configurations specific to the stack components as key-value arguments. If you don't provide a name, a random one is generated for you. For more information about how to work use the CLI for this, please refer to the dedicated documentation section.

Authentication Methods

Integrating and using a GCS Artifact Store in your pipelines is not possible without employing some form of authentication. If you're looking for a quick way to get started locally, you can use the Implicit Authentication method. However, the recommended way to authenticate to the GCP cloud platform is through a GCP Service Connector. This is particularly useful if you are configuring ZenML stacks that combine the GCS Artifact Store with other remote stack components also running in GCP.
| * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: True - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 | |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.6667 | 1 | 0.4134 | 0.4621 | 0.4641 | 0.3385 | | 2.0 | 3 | 0.4522 | 0.5063 | 0.5112 | 0.4202 | | **2.6667** | **4** | **0.4541** | **0.5168** | **0.5165** | **0.4262** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.3.1+cu121 - Accelerate: 0.31.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```