--- language: - en library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - dpo - rlhf - trl - autoquant - gguf --- # Llama3-8B-SuperNova-Spectrum-Hermes-DPO This model is a **DPO fine-tuned** version of my `DARE_TIES` merged Model [`yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties`](https://huggingface.co/yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties) on the [yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k](https://huggingface.co/datasets/yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k) dataset. ## DPO (Direct Preference Optimization): Direct Preference Optimization (DPO) is a fine-tuning technique that focuses on aligning a model's responses with human preferences or ranking data without requiring reinforcement learning steps, like in RLHF.
DPO vs RLHF Reference
## Training: - Trained on **1x A40s (48GB VRAM)** using the [HuggingFace TRL](https://huggingface.co/docs/trl/index). - **QLoRA**(`4-bit precision`) for 1 epoch ``` # LoRA configuration peft_config = LoraConfig( r=32, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) ``` ### Training Params The following hyperparameters were used during training: - learning_rate: 5e-05 - beta=0.1 - num_devices: 1 - gradient_accumulation_steps: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training Time = **1:57:00** hours ### Weight & Biases Report [Report-Link](https://api.wandb.ai/links/my-sft-team/d211juao) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## 🏆 Evaluation Scores Coming Soon