---
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Llama-3-8B-spectrum-25
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: true
tokenizer_use_fast: true
hub_model_id: Llama-3-8B-spectrum-25
# load_in_8bit: true
# load_in_4bit: false
# strict: false
datasets:
- path: yuvraj17/finetune_alpaca_1K
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.02
output_dir: ./outputs/llama-3-8b-spectrum-25
sequence_len: 2048
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
# Model Layers for Llama-3-8B-Instruct (Spectrum with snr values (25%)):
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# input_layernorm layers
- model.layers.0.input_layernorm
- model.layers.1.input_layernorm
- model.layers.2.input_layernorm
- model.layers.3.input_layernorm
- model.layers.4.input_layernorm
- model.layers.5.input_layernorm
- model.layers.6.input_layernorm
- model.layers.7.input_layernorm
# lm_head layers
# mlp.down_proj layers
- model.layers.1.mlp.down_proj
- model.layers.0.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.29.mlp.down_proj
# mlp.gate_proj layers
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.0.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.25.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.5.mlp.gate_proj
# mlp.up_proj layers
- model.layers.4.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.1.mlp.up_proj
# model.embed_tokens layers
# model.norm layers
# post_attention_layernorm layers
- model.layers.0.post_attention_layernorm
- model.layers.1.post_attention_layernorm
- model.layers.2.post_attention_layernorm
- model.layers.3.post_attention_layernorm
- model.layers.4.post_attention_layernorm
- model.layers.5.post_attention_layernorm
- model.layers.6.post_attention_layernorm
- model.layers.7.post_attention_layernorm
# self_attn.k_proj layers
- model.layers.29.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.20.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.14.self_attn.o_proj
- model.layers.7.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.11.self_attn.o_proj
- model.layers.9.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.10.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.13.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.8.self_attn.q_proj
- model.layers.14.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.0.self_attn.q_proj
- model.layers.15.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.26.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.16.self_attn.v_proj
- model.layers.15.self_attn.v_proj
# adapter: lora
# lora_model_dir:
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:
wandb_project: llama-3-8B-spectrum
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_steps: 0.01
save_strategy: epoch
save_steps:
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
```
# Llama-3-8B-spectrum-25
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4618 | 0.0325 | 1 | 1.2057 |
| 1.2189 | 0.0650 | 2 | 1.1976 |
| 1.0899 | 0.0976 | 3 | 1.1611 |
| 1.2787 | 0.1301 | 4 | 1.1385 |
| 1.1341 | 0.1626 | 5 | 1.1368 |
| 1.2793 | 0.1951 | 6 | 1.1228 |
| 1.2094 | 0.2276 | 7 | 1.1123 |
| 1.3289 | 0.2602 | 8 | 1.1126 |
| 1.1179 | 0.2927 | 9 | 1.1123 |
| 1.2456 | 0.3252 | 10 | 1.1109 |
| 1.2253 | 0.3577 | 11 | 1.1083 |
| 1.2563 | 0.3902 | 12 | 1.1079 |
| 1.3222 | 0.4228 | 13 | 1.1059 |
| 1.2197 | 0.4553 | 14 | 1.1080 |
| 1.1862 | 0.4878 | 15 | 1.1054 |
| 1.1136 | 0.5203 | 16 | 1.1040 |
| 1.2221 | 0.5528 | 17 | 1.1040 |
| 1.4475 | 0.5854 | 18 | 1.1049 |
| 1.0187 | 0.6179 | 19 | 1.1054 |
| 1.0596 | 0.6504 | 20 | 1.1057 |
| 1.2075 | 0.6829 | 21 | 1.1063 |
| 1.0671 | 0.7154 | 22 | 1.1062 |
| 1.2115 | 0.7480 | 23 | 1.1059 |
| 1.1137 | 0.7805 | 24 | 1.1061 |
| 1.5483 | 0.8130 | 25 | 1.1097 |
| 1.369 | 0.8455 | 26 | 1.1120 |
| 1.0528 | 0.8780 | 27 | 1.1155 |
| 1.2126 | 0.9106 | 28 | 1.1169 |
| 1.0164 | 0.9431 | 29 | 1.1167 |
| 1.2082 | 0.9756 | 30 | 1.1183 |
| 1.0256 | 1.0081 | 31 | 1.1191 |
| 0.6859 | 1.0407 | 32 | 1.1267 |
| 0.722 | 1.0732 | 33 | 1.1505 |
| 0.7161 | 1.1057 | 34 | 1.1719 |
| 0.724 | 1.1382 | 35 | 1.1829 |
| 0.67 | 1.1707 | 36 | 1.1844 |
| 0.5737 | 1.2033 | 37 | 1.1874 |
| 0.7081 | 1.2358 | 38 | 1.1940 |
| 0.7239 | 1.2683 | 39 | 1.1978 |
| 0.5927 | 1.3008 | 40 | 1.2022 |
| 0.6079 | 1.3333 | 41 | 1.2070 |
| 0.6427 | 1.3659 | 42 | 1.2104 |
| 0.506 | 1.3984 | 43 | 1.2134 |
| 0.4582 | 1.4309 | 44 | 1.2195 |
| 0.7492 | 1.4634 | 45 | 1.2208 |
| 0.538 | 1.4959 | 46 | 1.2258 |
| 0.7147 | 1.5285 | 47 | 1.2299 |
| 0.6565 | 1.5610 | 48 | 1.2339 |
| 0.8011 | 1.5935 | 49 | 1.2365 |
| 0.6986 | 1.6260 | 50 | 1.2396 |
| 0.7924 | 1.6585 | 51 | 1.2472 |
| 0.8128 | 1.6911 | 52 | 1.2542 |
| 0.6733 | 1.7236 | 53 | 1.2616 |
| 0.7363 | 1.7561 | 54 | 1.2693 |
| 0.5815 | 1.7886 | 55 | 1.2762 |
| 0.6571 | 1.8211 | 56 | 1.2750 |
| 0.6985 | 1.8537 | 57 | 1.2748 |
| 0.7519 | 1.8862 | 58 | 1.2715 |
| 0.8171 | 1.9187 | 59 | 1.2733 |
| 0.7373 | 1.9512 | 60 | 1.2791 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1