{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f020d05cb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f020d05cc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f020d05cca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f020d05cd30>", "_build": "<function ActorCriticPolicy._build at 0x7f020d05cdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f020d05ce50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f020d05cee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f020d05cf70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f020d05d000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f020d05d090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f020d05d120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f020d05d1b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f020d1f32c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719213198941666067, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOBBVD4sNog+M/3Yvs+GaL6CZTO8WgkcvgAAAAAAAAAAs6BfvRhlkz+i/CS+Ltz8vsgpzL1LtFq9AAAAAAAAAABm3aQ8OKjVu3LojT0Nilg8LjIovd6yNj0AAIA/AACAP6bVFT4UniE/9RLrvBfYir5M+GI9aqtgvQAAAAAAAAAAZpKZvMNRuT+rxT6+pnqbPalAwLv2+sm9AAAAAAAAAAANQQc+j5gIP8neBj2RT4S+nfCePQVO5rwAAAAAAAAAAHolIT7xAko+3aaXvr++aL5ZQIi8Kr9wvQAAAAAAAAAAmu3Su88Osz8276K+6oWPvl4HpTs0xss8AAAAAAAAAADNXwY+dl3kPo/fpToWlqa+0PbFPOImFz0AAAAAAAAAADOUm7zDBA28uHHnuiQlEL6O8VK8m9zGvQAAgD8AAIA/MxJ1PSliFT8PLJw9UuWjvmwGJTwGpkk7AAAAAAAAAAAzY1c7/gSzPyJvqj4dSgy/DSN5u3Bsmr0AAAAAAAAAADMIjD1SvbQ8ngkQPereSL4pB2U9x71IPAAAAAAAAAAAmheivWd5NT9VWOE9QpCfvn48Ir1yAqs9AAAAAAAAAACaWpe9rIx1PhwKSz7MQpO+AIGkvNtRFL0AAAAAAAAAAMANiz3DkTG6tgiOOuUbEbZtt1M5whoMtQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF1uMhouf6MAWyUTUgBjAF0lEdAlFqmYv38GnV9lChoBkdAbG/8XN1QqWgHTQoBaAhHQJRbB+mWMS91fZQoaAZHQHDFN4iX6ZZoB00/AWgIR0CUW7P07KaHdX2UKGgGR0ByapAood+5aAdNEgFoCEdAlFwko0ALiXV9lChoBkdAcjYdHDrJKmgHTY0BaAhHQJRezxYq5LB1fZQoaAZHQHJJQvtdAxBoB00iAWgIR0CUX1dD6WPcdX2UKGgGR0BuMQfnwG4aaAdNGQFoCEdAlGCkl3QlbHV9lChoBkdAckBJdB0IT2gHTSwBaAhHQJRhPpW3jMp1fZQoaAZHQHAIHztkWh1oB00dAWgIR0CUYXpcophGdX2UKGgGR0BwSW5d4VynaAdNJAFoCEdAlGG1zEJjUnV9lChoBkdAcVstWuHN5mgHTRsBaAhHQJRj/g9/z8R1fZQoaAZHQHFmJtrKvFFoB00yAWgIR0CUY/0mdAgQdX2UKGgGR0BulF/tpmEoaAdNFQFoCEdAlGRHkT6BRXV9lChoBkdAcx84VRDTjWgHTVcBaAhHQJRkmhpQDV91fZQoaAZHQHKfsRg7YChoB01JAWgIR0CUZbNGViWndX2UKGgGR0BwfNv1lGwzaAdNDgFoCEdAlGcIOhCdBnV9lChoBkdAcju15jYqXmgHTT8BaAhHQJRnTUvwmVt1fZQoaAZHQHNei/9Hc1xoB01NAWgIR0CUaBn3ta6jdX2UKGgGR0BwxXRx95QhaAdNXwFoCEdAlGhacNH6M3V9lChoBkdAcOgiWVu76GgHTQsBaAhHQJRqgWYWtU51fZQoaAZHQFDioC+10DFoB0vgaAhHQJRrN2ll9Sd1fZQoaAZHQHDEhoZhrnFoB001AWgIR0CUaz+OOsDGdX2UKGgGR0BCqHFYMfA9aAdL2GgIR0CUbLBfrrxBdX2UKGgGR0BvmXlEJBw/aAdNoAFoCEdAlGywzch1T3V9lChoBkdAbg+g/TspomgHTT0BaAhHQJRwqYIBzWB1fZQoaAZHQG4XK33Hq/xoB00iAWgIR0CUcXOW0JF9dX2UKGgGR0BvD+FpPAO8aAdNNgFoCEdAlHHZTER8MXV9lChoBkdAcSFwC8vmHWgHTUABaAhHQJRyKyOaOPx1fZQoaAZHQHGAIsyzolloB00LAWgIR0CUcr4d6sySdX2UKGgGR0BzFPwH7gsLaAdNEwFoCEdAlHM70rbxmXV9lChoBkdAcd+CqIacZ2gHTSUBaAhHQJR1DUmUnoh1fZQoaAZHQHBCJv1lGw1oB00VAWgIR0CUdrxZ+x4ZdX2UKGgGR0Bxo7I6r/83aAdNAgFoCEdAlHcxxtHhCXV9lChoBkdAbJd3hXKbKGgHTWMBaAhHQJR3wwlByCF1fZQoaAZHQHGxy5AhStNoB00BAmgIR0CUd+vsqrimdX2UKGgGR0Buy/u9eyAyaAdNKQFoCEdAlHhrUCq6v3V9lChoBkdAcMujQiRnvmgHS/1oCEdAlHh1JcxCY3V9lChoBkdAcngoYNy5qmgHTegBaAhHQJR5mois4kx1fZQoaAZHQHJ4Y/u9eyBoB00kAWgIR0CUert6HCXQdX2UKGgGR0ByApzjm0VraAdNbgFoCEdAlHvIMjNY83V9lChoBkdAcgBf2bobGWgHTR4BaAhHQJR8GstCiRJ1fZQoaAZHQHPm6x9oexRoB01AAWgIR0CUfJHYYixFdX2UKGgGR0BxiDngYP5IaAdNOgFoCEdAlHze3UhFE3V9lChoBkdAcNwbiqABk2gHTSUBaAhHQJR9Y5R0lqt1fZQoaAZHQHH6yF49ovloB01MAWgIR0CUlnuUUwi8dX2UKGgGR0BxWbg3tKI0aAdNBgFoCEdAlJcCFK02L3V9lChoBkdAb06JCSidrmgHS/VoCEdAlJcjXjENv3V9lChoBkdAb7yFQEZBLWgHTRwBaAhHQJSX2PsAvL51fZQoaAZHQHGj09U0eltoB01KAWgIR0CUmBZ3cHnmdX2UKGgGR0BwaBRbbDdhaAdNHQFoCEdAlJj4jrzGxXV9lChoBkdAcW/cMmWt2mgHTTwBaAhHQJSZZakhzNl1fZQoaAZHQHD8Ktga3qloB02BA2gIR0CUmvA5aNdadX2UKGgGR0Bx9zuDzyz5aAdNOQFoCEdAlJsaPS2H+XV9lChoBkdAbPyaUA1ejWgHTQgBaAhHQJScK2VmjCZ1fZQoaAZHQHCVbRa5f+loB005AWgIR0CUnJVktmL+dX2UKGgGR0Bs9AQDmr80aAdNKgFoCEdAlJ0h0IToMnV9lChoBkdARRxC0F8ohWgHS9hoCEdAlJ3jUmUnonV9lChoBkdAbolMVUModGgHTTMBaAhHQJSeQEV32VV1fZQoaAZHQHCpoxHoX9BoB00cAWgIR0CUn53nZCfIdX2UKGgGR0Bxgln8KohqaAdNZQFoCEdAlJ+4WcjJMnV9lChoBkdAcYuyxRl6JWgHTXMBaAhHQJSgn7xd6cB1fZQoaAZHQG/85ML4N7VoB00qAWgIR0CUoMDMNc4YdX2UKGgGR0BtCmQMhHLBaAdL/mgIR0CUoZczImw8dX2UKGgGR0BsnpgqmTC+aAdNJgFoCEdAlKG2/Firk3V9lChoBkdAb01pYcNpd2gHS/1oCEdAlKI16zE74nV9lChoBkdAcNuUjLSuyWgHTSsBaAhHQJSiOU0Nz8x1fZQoaAZHQHHifio86mxoB0v8aAhHQJSjaTNdJJ51fZQoaAZHQDQaLk0aZQZoB0vjaAhHQJSkeiO/+Kl1fZQoaAZHQHJ4pOzposZoB00eAWgIR0CUpIgnc+JQdX2UKGgGR0Bw60lQdjoZaAdL+2gIR0CUpfGGEf1ZdX2UKGgGR0BHqHNX5nDjaAdLyWgIR0CUpf0o0ALidX2UKGgGR0BtwKbvw3HaaAdNBgFoCEdAlKaqQq7ROXV9lChoBkdAcRaNmlImPmgHTUABaAhHQJSm8YCQtBh1fZQoaAZHQG/t42jwhGJoB01PAWgIR0CUpwnSv1UVdX2UKGgGR0BtdSdjG1hLaAdN9AJoCEdAlKgeU+s5n3V9lChoBkdAbrnkrf+CLGgHS/9oCEdAlKiOC5EtunV9lChoBkdAcDZQVbiZOWgHTSIBaAhHQJSoxN5+pfh1fZQoaAZHQHDnLleWv8toB00XAWgIR0CUqW9deIEbdX2UKGgGR0BvUu8f3evZaAdNHQFoCEdAlKt5DJEH+3V9lChoBkdAcEeyn1nM+2gHTSMBaAhHQJSroJXyRSx1fZQoaAZHQHC43c1wYLtoB00oAWgIR0CUrGMx46fbdX2UKGgGR0BvEnpD/lySaAdNBAFoCEdAlKz9nkDIR3V9lChoBkdAcRcz6JqIrWgHTW0BaAhHQJSvE5PuXu51fZQoaAZHQHC1LRF7UodoB001AWgIR0CUsBnzg/C7dX2UKGgGR0BHQQudwvQGaAdL92gIR0CUsD6Ae7tidX2UKGgGR0Bw4ZRBNVR2aAdNLQFoCEdAlLFiB5HEuXV9lChoBkdAcVjZ/CqIamgHTScBaAhHQJSyOCpWFOB1fZQoaAZHQG43vM8ox59oB014AWgIR0CUsl9Oh0yQdX2UKGgGR0ByBNH9WIXTaAdNPAFoCEdAlLMfTCtRvXV9lChoBkdAbvwgGr0aqGgHTR0BaAhHQJS0BeKKpDN1fZQoaAZHQE5rjjrAxi5oB0vQaAhHQJS0CO6unuR1fZQoaAZHQHCWZfICEHtoB00gAWgIR0CUtId+G47SdX2UKGgGR0BwfsQarFOxaAdNmAFoCEdAlLVXhbW3B3V9lChoBkdAb9xzZHuqm2gHTVoBaAhHQJS1oVvddmh1fZQoaAZHQHEhIvnKW9loB00xAWgIR0CUta8uzyBkdX2UKGgGR0Br08wztTkyaAdNJAFoCEdAlLX9DD0lJHV9lChoBkdASquPcSGrS2gHS99oCEdAlLju4b0e2nV9lChoBkdAcq193r2QGWgHTR0BaAhHQJS6qvgWJrN1fZQoaAZHQHAMqUqx1PpoB017AWgIR0CUuwXa8Hv+dX2UKGgGR0BwdegnMMZxaAdNXAFoCEdAlLsQ5aNdaHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |