--- pipeline_tag: text-generation inference: true widget: - text: 'Hello!' example_title: Hello world group: Python library_name: transformers --- This model is randomly initialized, using the config from [state-spaces/mamba-2.8b-hf](https://huggingface.co/state-spaces/mamba-2.8b-hf/blob/main/config.json) but with smaller size. Codes: ```python import os import torch import transformers from huggingface_hub import create_repo, upload_folder source_model_id = 'state-spaces/mamba-2.8b-hf' tiny_random_name = 'mamba-tiny-random' save_path = f'/tmp/yujiepan/{tiny_random_name}' repo_id = f'yujiepan/{tiny_random_name}' config = transformers.AutoConfig.from_pretrained( source_model_id, trust_remote_code=True) config.hidden_size = 8 config.expand = 4 config.intermediate_size = 32 config.state_size = 8 config.num_hidden_layers = 2 config.n_layer = 2 config.torch_dtype = torch.bfloat16 model = transformers.AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = transformers.GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) transformers.set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): print(name, p.shape) torch.nn.init.uniform_(p, -0.5, 0.5) model.save_pretrained(save_path) tokenizer = transformers.AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True) result = transformers.pipelines.pipeline( 'text-generation', model=model, tokenizer=tokenizer, device='cuda', max_new_tokens=16, )('Hello') print(result) model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) os.system(f'ls -alh {save_path}') create_repo(repo_id, exist_ok=True) upload_folder(repo_id=repo_id, folder_path=save_path) ```