--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is for debugging. It is randomly initialized with the config from [nvidia/Hymba-1.5B-Instruct](https://huggingface.co/nvidia/Hymba-1.5B-Instruct) but is of smaller size. Codes: ```python from huggingface_hub import create_repo, upload_folder import os import torch import transformers from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed model_id = "nvidia/Hymba-1.5B-Instruct" repo_id = "yujiepan/hymba-tiny-random" save_path = f"/tmp/{repo_id}" config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) config.conv_dim = {str(i): 32 for i in range(3)} config.hidden_size = 16 config.intermediate_size = 32 config.num_attention_heads = 2 config.num_key_value_heads = 1 config.v_head_dim = 8 config.num_hidden_layers = 3 tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.save_pretrained(save_path) model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( model_id, trust_remote_code=True) set_seed(42) with torch.no_grad(): for _, p in sorted(model.named_parameters()): torch.nn.init.uniform_(p, -0.2, 0.2) model.save_pretrained(save_path) prompt = 'Hello!' messages = [ {"role": "system", "content": "You are a helpful assistant."} ] messages.append({"role": "user", "content": prompt}) tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda') outputs = model.cuda().generate( tokenized_chat, max_new_tokens=16, do_sample=False, temperature=0.7, use_cache=True, ) input_length = tokenized_chat.shape[1] response = tokenizer.decode( outputs[0][input_length:], skip_special_tokens=True) print(f"Model response: {response}") os.system(f"ls -alh {save_path}") create_repo(repo_id, exist_ok=True) upload_folder(repo_id=repo_id, folder_path=save_path) ```