--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is randomly initialized, using the config from [https://huggingface.co/tiiuae/falcon-7b-instruct] but with smaller size. Note the model is in float16. Codes: ```python import transformers from optimum.intel.openvino import OVModelForCausalLM import torch import os from huggingface_hub import create_repo, upload_folder source_model_id = 'tiiuae/falcon-7b-instruct' save_path = '/tmp/yujiepan/falcon-tiny-random' repo_id = 'yujiepan/falcon-tiny-random' config = transformers.AutoConfig.from_pretrained( source_model_id, trust_remote_code=True) config.hidden_size = 8 config.num_attention_heads = 2 config.num_hidden_layers = 2 config.torch_dtype = torch.float16 model = transformers.AutoModelForCausalLM.from_config( config, trust_remote_code=True) model = model.half() model.save_pretrained(save_path) tokenizer = transformers.AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True) tokenizer.save_pretrained(save_path) # current not supported, might add this later # ovmodel = OVModelForCausalLM.from_pretrained( # save_path, export=True, trust_remote_code=True) # ovmodel.save_pretrained(save_path) os.system(f'ls -alh {save_path}') create_repo(repo_id, exist_ok=True) upload_folder(repo_id=repo_id, folder_path=save_path) ```