--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-continual-kennedy2020constructing-S0T1 results: [] --- # roberta-base-continual-kennedy2020constructing-S0T1 This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5398 - Accuracy: 0.5667 - Roc Auc: 0.7793 - Micro Precision: 0.5667 - Macro Precision: 0.5834 - Weighted Precision: 0.5834 - Micro Recall: 0.5667 - Macro Recall: 0.5667 - Weighted Recall: 0.5667 - Micro F1: 0.5667 - Macro F1: 0.5568 - Weighted F1: 0.5568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 | Macro F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:---------------:|:---------------:|:------------------:|:------------:|:------------:|:---------------:|:--------:|:--------:|:-----------:| | No log | 1.0 | 57 | 1.3397 | 0.3333 | 0.6652 | 0.3333 | 0.1111 | 0.1111 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.1667 | 0.1667 | | No log | 2.0 | 114 | 1.0461 | 0.48 | 0.7563 | 0.48 | 0.3508 | 0.3508 | 0.48 | 0.48 | 0.48 | 0.48 | 0.3810 | 0.3810 | | No log | 3.0 | 171 | 1.0020 | 0.5533 | 0.7707 | 0.5533 | 0.4876 | 0.4876 | 0.5533 | 0.5533 | 0.5533 | 0.5533 | 0.4667 | 0.4667 | | No log | 4.0 | 228 | 1.1591 | 0.5133 | 0.7707 | 0.5133 | 0.5582 | 0.5582 | 0.5133 | 0.5133 | 0.5133 | 0.5133 | 0.4790 | 0.4790 | | No log | 5.0 | 285 | 1.2874 | 0.5467 | 0.7651 | 0.5467 | 0.5471 | 0.5471 | 0.5467 | 0.5467 | 0.5467 | 0.5467 | 0.5278 | 0.5278 | | No log | 6.0 | 342 | 1.1093 | 0.6067 | 0.7936 | 0.6067 | 0.5863 | 0.5863 | 0.6067 | 0.6067 | 0.6067 | 0.6067 | 0.5874 | 0.5874 | | No log | 7.0 | 399 | 1.2420 | 0.6 | 0.7948 | 0.6 | 0.5925 | 0.5925 | 0.6 | 0.6 | 0.6 | 0.6 | 0.5860 | 0.5860 | | No log | 8.0 | 456 | 1.5520 | 0.5467 | 0.7737 | 0.5467 | 0.5457 | 0.5457 | 0.5467 | 0.5467 | 0.5467 | 0.5467 | 0.5282 | 0.5282 | | 0.4501 | 9.0 | 513 | 1.5398 | 0.5667 | 0.7793 | 0.5667 | 0.5834 | 0.5834 | 0.5667 | 0.5667 | 0.5667 | 0.5667 | 0.5568 | 0.5568 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0