--- library_name: transformers language: - tr license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - khanacademy - turkish - stem - asr metrics: - wer model-index: - name: whisper-khanacademy-large-v3-turbo-tr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ysdede/khanacademy-turkish type: khanacademy metrics: - name: Wer type: wer value: 15.695132614398135 --- # whisper-khanacademy-large-v3-turbo-tr This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ysdede/khanacademy-turkish dataset. It achieves the following results on the evaluation set: - Loss: 0.2129 - Wer: 15.6951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 1204 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2298 | 0.1429 | 172 | 0.2418 | 16.5877 | | 0.2157 | 0.2857 | 344 | 0.2255 | 15.9611 | | 0.1668 | 1.0939 | 516 | 0.2227 | 15.7461 | | 0.1752 | 1.2367 | 688 | 0.2159 | 15.8846 | | 0.1492 | 2.0449 | 860 | 0.2187 | 15.7571 | | 0.1592 | 2.1877 | 1032 | 0.2134 | 15.5421 | | 0.1336 | 2.3306 | 1204 | 0.2129 | 15.6951 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0