--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-Validation-goodareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current results: [] --- # roberta-Validation-goodareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3698 - Accuracy: 0.8216 - Precision: 0.4348 - Recall: 0.5932 - F1: 0.5018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.6142257525574262e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4927 | 1.0 | 296 | 0.2877 | 0.8434 | 0.4792 | 0.3898 | 0.4299 | | 0.3855 | 2.0 | 592 | 0.2566 | 0.8665 | 0.5714 | 0.4746 | 0.5185 | | 0.3257 | 3.0 | 888 | 0.2534 | 0.8575 | 0.5368 | 0.4322 | 0.4789 | | 0.2553 | 4.0 | 1184 | 0.3290 | 0.8216 | 0.4371 | 0.6186 | 0.5123 | | 0.1911 | 5.0 | 1480 | 0.3698 | 0.8216 | 0.4348 | 0.5932 | 0.5018 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0