youngzhou12 commited on
Commit
0cefe6d
·
verified ·
1 Parent(s): 98402ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -3
README.md CHANGED
@@ -1,3 +1,86 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: pytorch
4
+ tags:
5
+ - Medical Vsion-Language Pre-Training
6
+ - BenchX
7
+ ---
8
+ # MedKLIP Checkpoint Model Card
9
+
10
+ A retrained MedKLIP model for benchmarking medical vision-language pre-training methods within the BenchX framework.
11
+
12
+ ## Model Details
13
+ - **Model Type**: MedKLIP
14
+ - **Architecture**: ResNet-50 image encoder and custom BERT text encoder
15
+ - **Original Papers**: [MedKLIP: Medical Knowledge Enhanced Language-Image Pre-Training in Radiology](https://arxiv.org/abs/2301.02228)
16
+ - **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
17
+ - **Benchmark Framework**: https://github.com/yangzhou12/BenchX
18
+
19
+ ## Intended Use
20
+ - **Primary Use Cases**:
21
+ - Benchmarking performance for Medical Image Classification
22
+ - Benchmarking performance for Medical Image Segmentation
23
+ - Benchmarking performance for Medical Report Generation
24
+
25
+ ## Pre-Training Data
26
+ - **Dataset**:
27
+ - Data source(s): MIMIC-CXR
28
+ - Types of medical images: Frontal chest X-rays
29
+ - Text data type: Associated radiology reports
30
+
31
+ ## Prerequisites
32
+
33
+ Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX.
34
+
35
+ ## Training & Evaluation
36
+
37
+ ### 1. Classification
38
+
39
+ To fine-tune MedKLIP for classification, run this command:
40
+
41
+ ```
42
+ python bin/train.py config/classification/<dataset_name>/MedKLIP.yml
43
+ ```
44
+
45
+ ### 2. Segmentation
46
+ To fine-tune MedKLIP for segmentation, run this command:
47
+
48
+ ```
49
+ python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/MedKLIP.yml
50
+ ```
51
+
52
+ ### 3. Report Generation
53
+ To fine-tune MedKLIP for report generation, run this command:
54
+ ```
55
+ python bin/train.py config/report_generation/<dataset_name>/MedKLIP.yml
56
+ ```
57
+
58
+ ### 4. Evaluation
59
+ To evaluate fine-tuned MedKLIP models, run:
60
+
61
+ ```
62
+ # For classification and report generation
63
+ python bin/test.py config/<task_name>/<dataset_name>/MedKLIP.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
64
+
65
+ # For segmentation
66
+ python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/MedKLIP.yml <path_to_checkpoint>
67
+ ```
68
+
69
+ ## Citations
70
+ ```bibtex
71
+ @inproceedings{wu2023medklip,
72
+ title={{MedKLIP}: Medical Knowledge Enhanced Language-Image Pre-Training},
73
+ author={Wu, Chaoyi and Zhang, Xiaoman and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
74
+ journal={Proceedings of ICCV},
75
+ pages = "21372--21383",
76
+ year={2023}
77
+ }
78
+ ```
79
+ ```bibtex
80
+ @inproceedings{zhou2024benchx,
81
+ title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
82
+ author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
83
+ booktitle={Proceedings of NeurIPS},
84
+ year={2024}
85
+ }
86
+ ```