Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,86 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: pytorch
|
4 |
+
tags:
|
5 |
+
- Medical Vsion-Language Pre-Training
|
6 |
+
- BenchX
|
7 |
+
---
|
8 |
+
# MedKLIP Checkpoint Model Card
|
9 |
+
|
10 |
+
A retrained MedKLIP model for benchmarking medical vision-language pre-training methods within the BenchX framework.
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
- **Model Type**: MedKLIP
|
14 |
+
- **Architecture**: ResNet-50 image encoder and custom BERT text encoder
|
15 |
+
- **Original Papers**: [MedKLIP: Medical Knowledge Enhanced Language-Image Pre-Training in Radiology](https://arxiv.org/abs/2301.02228)
|
16 |
+
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
|
17 |
+
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX
|
18 |
+
|
19 |
+
## Intended Use
|
20 |
+
- **Primary Use Cases**:
|
21 |
+
- Benchmarking performance for Medical Image Classification
|
22 |
+
- Benchmarking performance for Medical Image Segmentation
|
23 |
+
- Benchmarking performance for Medical Report Generation
|
24 |
+
|
25 |
+
## Pre-Training Data
|
26 |
+
- **Dataset**:
|
27 |
+
- Data source(s): MIMIC-CXR
|
28 |
+
- Types of medical images: Frontal chest X-rays
|
29 |
+
- Text data type: Associated radiology reports
|
30 |
+
|
31 |
+
## Prerequisites
|
32 |
+
|
33 |
+
Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX.
|
34 |
+
|
35 |
+
## Training & Evaluation
|
36 |
+
|
37 |
+
### 1. Classification
|
38 |
+
|
39 |
+
To fine-tune MedKLIP for classification, run this command:
|
40 |
+
|
41 |
+
```
|
42 |
+
python bin/train.py config/classification/<dataset_name>/MedKLIP.yml
|
43 |
+
```
|
44 |
+
|
45 |
+
### 2. Segmentation
|
46 |
+
To fine-tune MedKLIP for segmentation, run this command:
|
47 |
+
|
48 |
+
```
|
49 |
+
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/MedKLIP.yml
|
50 |
+
```
|
51 |
+
|
52 |
+
### 3. Report Generation
|
53 |
+
To fine-tune MedKLIP for report generation, run this command:
|
54 |
+
```
|
55 |
+
python bin/train.py config/report_generation/<dataset_name>/MedKLIP.yml
|
56 |
+
```
|
57 |
+
|
58 |
+
### 4. Evaluation
|
59 |
+
To evaluate fine-tuned MedKLIP models, run:
|
60 |
+
|
61 |
+
```
|
62 |
+
# For classification and report generation
|
63 |
+
python bin/test.py config/<task_name>/<dataset_name>/MedKLIP.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
|
64 |
+
|
65 |
+
# For segmentation
|
66 |
+
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/MedKLIP.yml <path_to_checkpoint>
|
67 |
+
```
|
68 |
+
|
69 |
+
## Citations
|
70 |
+
```bibtex
|
71 |
+
@inproceedings{wu2023medklip,
|
72 |
+
title={{MedKLIP}: Medical Knowledge Enhanced Language-Image Pre-Training},
|
73 |
+
author={Wu, Chaoyi and Zhang, Xiaoman and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
|
74 |
+
journal={Proceedings of ICCV},
|
75 |
+
pages = "21372--21383",
|
76 |
+
year={2023}
|
77 |
+
}
|
78 |
+
```
|
79 |
+
```bibtex
|
80 |
+
@inproceedings{zhou2024benchx,
|
81 |
+
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
|
82 |
+
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
|
83 |
+
booktitle={Proceedings of NeurIPS},
|
84 |
+
year={2024}
|
85 |
+
}
|
86 |
+
```
|