--- license: apache-2.0 base_model: openai/whisper-small tags: - audio - automatic-speech-recognition datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer widget: - example_title: Sample 1 src: sample_ar.mp3 model-index: - name: whisper-small-ar-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_1 type: mozilla-foundation/common_voice_16_1 config: ar split: test args: ar metrics: - name: Wer type: wer value: 158.15321276282899 language: - ar library_name: transformers pipeline_tag: automatic-speech-recognition --- # whisper-small-ar-v1 This model is for Arabic automatic speech recognition (ASR). It is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Arabic portion of the `mozilla-foundation/common_voice_16_1` dataset. It achieves the following results on the evaluation set: - Loss: 0.3354 - Wer: 158.1532 ## Model description Whisper model fine-tuned on Arabic data, following the [official tutorial](https://huggingface.co/blog/fine-tune-whisper). ## Intended uses & limitations The model is not fully trained yet. Hence, it is not intended for professional use. ## Training and evaluation data Training Data: CommonVoice (v16.1) Arabic train + validation splits Validation Data: CommonVoice (v16.1) Arabic test split ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2742 | 0.82 | 1000 | 0.3790 | 275.2463 | | 0.1625 | 1.65 | 2000 | 0.3353 | 228.5252 | | 0.1002 | 2.47 | 3000 | 0.3311 | 238.8858 | | 0.0751 | 3.3 | 4000 | 0.3354 | 158.1532 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2