--- base_model: TaylorAI/bge-micro-v2 datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:160000 - loss:TripletLoss widget: - source_sentence: Corpus luteum cyst of left ovary sentences: - Hematoma of broad ligament - Corpus luteum cyst of ovary, unspecified side - Drug/chem diab with mod nonp rtnop with macular edema, bi Drug or - source_sentence: Sltr-haris Type IV physl fx low end r tibia, 7thK Salter-Harris Type IV sentences: - Sltr-haris Type IV physl fx low end r tibia, 7thG Salter-Harris Type IV physeal - Contusion of unspecified ear, sequela - Sltr-haris Type III physl fx low end l tibia, 7thP Salter-Harris Type III - source_sentence: Torus fracture of upper end of left tibia, init for clos fx sentences: - Torus fracture of upper end of left tibia, sequela - Torus fx upper end of unsp tibia, subs for fx w malunion Torus - Congenital absence, atresia and stenosis of jejunum - source_sentence: Pre-existing essential htn comp pregnancy, second trimester sentences: - Wear of artic bearing surface of int prosth l knee jt, subs - Unsp pre-existing hypertension compl preg/chldbrth Unspecified pre-existing - Pre-existing essential hypertension complicating childbirth - source_sentence: Carbuncle, unspecified sentences: - Poisoning by appetite depressants, self-harm, subs Poisoning - Cutaneous abscess, furuncle and carbuncle, unspecified - Furuncle of neck --- # SentenceTransformer based on TaylorAI/bge-micro-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("training") # Run inference sentences = [ 'Carbuncle, unspecified', 'Cutaneous abscess, furuncle and carbuncle, unspecified', 'Furuncle of neck', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 160,000 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:------------------------------------------------------------------------| | Sudden visual loss, right eye | Sudden visual loss | Visual distortions of shape and size | | Drug/chem diab with mild nonp rtnop without mclr edema, unsp Drug or chemical | Drug/chem diab with mod nonp rtnop with macular edema, bi Drug or | Hypostatic pneumonia, unspecified organism | | Bronchiectasis with (acute) exacerbation | Bronchiectasis | Gestatnl htn w/o significant proteinuria, second trimester | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `max_steps`: 10000 #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3.0 - `max_steps`: 10000 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:-----:|:-----:|:-------------:| | 0.005 | 50 | 3.9819 | | 0.01 | 100 | 3.8181 | | 0.015 | 150 | 3.7244 | | 0.02 | 200 | 3.6362 | | 0.025 | 250 | 3.5459 | | 0.03 | 300 | 3.4653 | | 0.035 | 350 | 3.4066 | | 0.04 | 400 | 3.3441 | | 0.045 | 450 | 3.3497 | | 0.05 | 500 | 3.2625 | | 0.055 | 550 | 3.1359 | | 0.06 | 600 | 3.1542 | | 0.065 | 650 | 3.1528 | | 0.07 | 700 | 3.1634 | | 0.075 | 750 | 3.0737 | | 0.08 | 800 | 3.1022 | | 0.085 | 850 | 3.0288 | | 0.09 | 900 | 2.9434 | | 0.095 | 950 | 2.9014 | | 0.1 | 1000 | 3.0412 | | 0.105 | 1050 | 2.9844 | | 0.11 | 1100 | 2.845 | | 0.115 | 1150 | 2.9053 | | 0.12 | 1200 | 2.8447 | | 0.125 | 1250 | 2.8222 | | 0.13 | 1300 | 2.8545 | | 0.135 | 1350 | 2.7114 | | 0.14 | 1400 | 2.7586 | | 0.145 | 1450 | 2.6997 | | 0.15 | 1500 | 2.5484 | | 0.155 | 1550 | 2.7853 | | 0.16 | 1600 | 2.6711 | | 0.165 | 1650 | 2.7364 | | 0.17 | 1700 | 2.8237 | | 0.175 | 1750 | 2.737 | | 0.18 | 1800 | 2.7059 | | 0.185 | 1850 | 2.6577 | | 0.19 | 1900 | 2.777 | | 0.195 | 1950 | 2.7369 | | 0.2 | 2000 | 2.6317 | | 0.205 | 2050 | 2.6678 | | 0.21 | 2100 | 2.6889 | | 0.215 | 2150 | 2.5734 | | 0.22 | 2200 | 2.7214 | | 0.225 | 2250 | 2.5059 | | 0.23 | 2300 | 2.623 | | 0.235 | 2350 | 2.6761 | | 0.24 | 2400 | 2.5663 | | 0.245 | 2450 | 2.6678 | | 0.25 | 2500 | 2.5856 | | 0.255 | 2550 | 2.5436 | | 0.26 | 2600 | 2.6359 | | 0.265 | 2650 | 2.6266 | | 0.27 | 2700 | 2.5698 | | 0.275 | 2750 | 2.5611 | | 0.28 | 2800 | 2.6306 | | 0.285 | 2850 | 2.658 | | 0.29 | 2900 | 2.5878 | | 0.295 | 2950 | 2.553 | | 0.3 | 3000 | 2.5295 | | 0.305 | 3050 | 2.5211 | | 0.31 | 3100 | 2.6489 | | 0.315 | 3150 | 2.6131 | | 0.32 | 3200 | 2.7298 | | 0.325 | 3250 | 2.5931 | | 0.33 | 3300 | 2.5927 | | 0.335 | 3350 | 2.5403 | | 0.34 | 3400 | 2.4497 | | 0.345 | 3450 | 2.6764 | | 0.35 | 3500 | 2.5673 | | 0.355 | 3550 | 2.6134 | | 0.36 | 3600 | 2.6298 | | 0.365 | 3650 | 2.5747 | | 0.37 | 3700 | 2.6245 | | 0.375 | 3750 | 2.5275 | | 0.38 | 3800 | 2.5541 | | 0.385 | 3850 | 2.5469 | | 0.39 | 3900 | 2.452 | | 0.395 | 3950 | 2.483 | | 0.4 | 4000 | 2.5592 | | 0.405 | 4050 | 2.4209 | | 0.41 | 4100 | 2.6014 | | 0.415 | 4150 | 2.3952 | | 0.42 | 4200 | 2.5131 | | 0.425 | 4250 | 2.4455 | | 0.43 | 4300 | 2.5441 | | 0.435 | 4350 | 2.5412 | | 0.44 | 4400 | 2.3887 | | 0.445 | 4450 | 2.5183 | | 0.45 | 4500 | 2.4578 | | 0.455 | 4550 | 2.5733 | | 0.46 | 4600 | 2.6645 | | 0.465 | 4650 | 2.5156 | | 0.47 | 4700 | 2.4689 | | 0.475 | 4750 | 2.4995 | | 0.48 | 4800 | 2.6219 | | 0.485 | 4850 | 2.605 | | 0.49 | 4900 | 2.4358 | | 0.495 | 4950 | 2.6028 | | 0.5 | 5000 | 2.5858 | | 0.505 | 5050 | 2.3894 | | 0.51 | 5100 | 2.6398 | | 0.515 | 5150 | 2.4805 | | 0.52 | 5200 | 2.5322 | | 0.525 | 5250 | 2.4 | | 0.53 | 5300 | 2.4541 | | 0.535 | 5350 | 2.5067 | | 0.54 | 5400 | 2.5244 | | 0.545 | 5450 | 2.5514 | | 0.55 | 5500 | 2.4608 | | 0.555 | 5550 | 2.5884 | | 0.56 | 5600 | 2.4291 | | 0.565 | 5650 | 2.6395 | | 0.57 | 5700 | 2.3873 | | 0.575 | 5750 | 2.652 | | 0.58 | 5800 | 2.5328 | | 0.585 | 5850 | 2.5713 | | 0.59 | 5900 | 2.4961 | | 0.595 | 5950 | 2.4438 | | 0.6 | 6000 | 2.5537 | | 0.605 | 6050 | 2.6323 | | 0.61 | 6100 | 2.6427 | | 0.615 | 6150 | 2.5648 | | 0.62 | 6200 | 2.4444 | | 0.625 | 6250 | 2.6298 | | 0.63 | 6300 | 2.583 | | 0.635 | 6350 | 2.6873 | | 0.64 | 6400 | 2.5556 | | 0.645 | 6450 | 2.5652 | | 0.65 | 6500 | 2.618 | | 0.655 | 6550 | 2.4977 | | 0.66 | 6600 | 2.5805 | | 0.665 | 6650 | 2.4989 | | 0.67 | 6700 | 2.5527 | | 0.675 | 6750 | 2.5616 | | 0.68 | 6800 | 2.5378 | | 0.685 | 6850 | 2.5159 | | 0.69 | 6900 | 2.6366 | | 0.695 | 6950 | 2.5066 | | 0.7 | 7000 | 2.498 | | 0.705 | 7050 | 2.5416 | | 0.71 | 7100 | 2.5362 | | 0.715 | 7150 | 2.5541 | | 0.72 | 7200 | 2.5598 | | 0.725 | 7250 | 2.4584 | | 0.73 | 7300 | 2.6006 | | 0.735 | 7350 | 2.5072 | | 0.74 | 7400 | 2.4681 | | 0.745 | 7450 | 2.4808 | | 0.75 | 7500 | 2.5695 | | 0.755 | 7550 | 2.5131 | | 0.76 | 7600 | 2.5227 | | 0.765 | 7650 | 2.5553 | | 0.77 | 7700 | 2.4966 | | 0.775 | 7750 | 2.4811 | | 0.78 | 7800 | 2.5081 | | 0.785 | 7850 | 2.5916 | | 0.79 | 7900 | 2.4911 | | 0.795 | 7950 | 2.5778 | | 0.8 | 8000 | 2.5111 | | 0.805 | 8050 | 2.5094 | | 0.81 | 8100 | 2.5456 | | 0.815 | 8150 | 2.5445 | | 0.82 | 8200 | 2.5531 | | 0.825 | 8250 | 2.6358 | | 0.83 | 8300 | 2.5247 | | 0.835 | 8350 | 2.4117 | | 0.84 | 8400 | 2.5442 | | 0.845 | 8450 | 2.537 | | 0.85 | 8500 | 2.4553 | | 0.855 | 8550 | 2.6114 | | 0.86 | 8600 | 2.4397 | | 0.865 | 8650 | 2.5667 | | 0.87 | 8700 | 2.5281 | | 0.875 | 8750 | 2.4894 | | 0.88 | 8800 | 2.5723 | | 0.885 | 8850 | 2.5952 | | 0.89 | 8900 | 2.4053 | | 0.895 | 8950 | 2.4827 | | 0.9 | 9000 | 2.5784 | | 0.905 | 9050 | 2.4545 | | 0.91 | 9100 | 2.527 | | 0.915 | 9150 | 2.5998 | | 0.92 | 9200 | 2.4528 | | 0.925 | 9250 | 2.5195 | | 0.93 | 9300 | 2.5508 | | 0.935 | 9350 | 2.5952 | | 0.94 | 9400 | 2.607 | | 0.945 | 9450 | 2.5086 | | 0.95 | 9500 | 2.4972 | | 0.955 | 9550 | 2.4919 | | 0.96 | 9600 | 2.5147 | | 0.965 | 9650 | 2.4523 | | 0.97 | 9700 | 2.6027 | | 0.975 | 9750 | 2.4286 | | 0.98 | 9800 | 2.5617 | | 0.985 | 9850 | 2.4994 | | 0.99 | 9900 | 2.6527 | | 0.995 | 9950 | 2.538 | | 1.0 | 10000 | 2.4506 |
### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.4.0 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```