export CORES=`grep -c ^processor /proc/cpuinfo` export XLA_PYTHON_CLIENT_PREALLOCATE=false export HF_PROJECT="byt5-small-dutch-english" export DATASET="yhavinga/mc4_nl_cleaned" export DATASET_CONFIG="tiny_en_nl" # Config of the dataset in the Huggingface Hub export DATASET_SPLIT="train" # Split to use for training tokenizer and model export CONFIG_NAME="google/byt5-small" export TOKENIZER_NAME="google/byt5-small" export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model mkdir -p "${MODEL_PATH}" python ../train/run_t5_mlm_flax_pmap.py \ --output_dir="${MODEL_PATH}" \ --model_type="t5" \ --config_name="${CONFIG_NAME}" \ --tokenizer_name="${TOKENIZER_NAME}" \ --preprocessing_num_workers="${CORES}" \ --do_train --do_eval \ --dataset_name="${DATASET}" \ --dataset_config_name="${DATASET_CONFIG}" \ --max_seq_length="1024" \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --gradient_accumulation_steps="8" \ --mean_noise_span_length="20" \ --dtype="bfloat16" \ --z_loss="1e-4" \ --optim="adafactor" \ --learning_rate="0.0034" \ --lr_decay="linear" \ --overwrite_output_dir \ --num_train_epochs="2" \ --logging_steps="20" \ --save_steps="1000" \ --eval_steps="1000" \ --warmup_steps="300" \ --validation_split_count="15000" \ --wandb_project="byt5-small-dutch-english" \ --wandb_job_type="pmap" # \ # --max_train_samples="160000" \ # --max_eval_samples="1000" \ # --model_name_or_path="${MODEL_PATH}" \ # --resume_from_checkpoint="${MODEL_PATH}" \ # \ # --lr_decay="exponential" \ # --lr_transition_steps="400000" \ # --lr_decay_rate="0.7" \ # --lr_staircase="false" \ # --auth_token="$(cat ~/.huggingface/token)" \