--- base_model: basel/ATTACK-BERT library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: With the exception of the DHSK and the RNG seed, all critical security parameters are loaded during manufacturing. - text: The private key component of an ANSI X9.31-compliant PRNG is stored securely in NVRAM. - text: This DRNG uses an 8-byte Seed and an 16-byte Seed Key as inputs to the DRNG. The seed & seed-key values are generated by the hardware RNG and stored only in RAM. These values are zeroized when the module is reset in contact mode or when the module is deselected in contactless mode. - text: The seed key is used as an input to the X9.31 RNG, a deterministic random number generator, and is generally not stored long term. - text: PRNG seed key X9.31 SDRAM This is the seed key for the PRNG. It is statically stored in the code. inference: true --- # SetFit with basel/ATTACK-BERT This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [basel/ATTACK-BERT](https://huggingface.co/basel/ATTACK-BERT) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [basel/ATTACK-BERT](https://huggingface.co/basel/ATTACK-BERT) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v3") # Run inference preds = model("The private key component of an ANSI X9.31-compliant PRNG is stored securely in NVRAM.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 6 | 18.8444 | 59 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 21 | | positive | 24 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0149 | 1 | 0.2442 | - | | 0.7463 | 50 | 0.1714 | - | | 1.0 | 67 | - | 0.1785 | | 1.4925 | 100 | 0.0029 | - | | 2.0 | 134 | - | 0.1880 | | 2.2388 | 150 | 0.0004 | - | | 2.9851 | 200 | 0.0003 | - | | 3.0 | 201 | - | 0.1818 | | 3.7313 | 250 | 0.0003 | - | | 4.0 | 268 | - | 0.1837 | ### Framework Versions - Python: 3.10.15 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.3.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Datasets: 2.19.1 - Tokenizers: 0.20.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```