--- license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: qwen2-0.5b-sft results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhaoyang1/huggingface/runs/h6gigsup) # qwen2-0.5b-sft This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.5079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5055 | 0.9997 | 1911 | 1.5079 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1