--- datasets: - voxceleb library_name: transformers metrics: - accuracy tags: - audio-classification - generated_from_trainer model-index: - name: xvector-voxceleb1 results: - task: type: audio-classification name: Audio Classification dataset: name: confit/voxceleb type: voxceleb config: verification split: train args: verification metrics: - type: accuracy value: 0.9405314497140935 name: Accuracy --- # xvector-voxceleb1 This model is a fine-tuned version of [](https://huggingface.co/) on the confit/voxceleb dataset. It achieves the following results on the evaluation set: - Loss: 0.2981 - Accuracy: 0.9405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 256 - eval_batch_size: 1 - seed: 914 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.6869 | 1.0 | 523 | 4.1199 | 0.1960 | | 3.2423 | 2.0 | 1046 | 2.2824 | 0.5047 | | 2.4164 | 3.0 | 1569 | 1.4862 | 0.6816 | | 1.8625 | 4.0 | 2092 | 0.9794 | 0.7917 | | 1.5637 | 5.0 | 2615 | 0.7048 | 0.8490 | | 1.265 | 6.0 | 3138 | 0.5389 | 0.8862 | | 1.0888 | 7.0 | 3661 | 0.4364 | 0.9101 | | 0.9296 | 8.0 | 4184 | 0.3617 | 0.9265 | | 0.8066 | 9.0 | 4707 | 0.3207 | 0.9353 | | 0.7675 | 10.0 | 5230 | 0.2981 | 0.9405 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.0.0+cu117 - Datasets 3.2.0 - Tokenizers 0.21.0