--- datasets: - BAAI/Infinity-Instruct base_model: - nvidia/Llama-3.1-Minitron-4B-Depth-Base --- We fine-tune nvidia/Llama-3.1-Minitron-4B-Depth-Base with LLM-Neo method,which combines LoRA and KD in one. Training data is sampling from BAAI/Infinity-Instruct for 100k lines. ## Benchmarks In this section, we report the results for Llama-3.1-Minitron-4B-Depth-Neo-10w on standard automatic benchmarks. For all the evaluations, we use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) library. ### Evaluation results
Category Benchmark Version n-shot Metric Value Stderr
BBH BBH (General) N/A 3 exact_match 0.4729 ± 0.0055
BBH (Boolean Expressions) 2 3 exact_match 0.8120 ± 0.0248
BBH (Date Understanding) 2 3 exact_match 0.6600 ± 0.0300
CEVAL CEVAL (General) N/A 0 acc 0.4413 ± 0.0135
CEVAL (Accountant) 1 0 acc 0.3469 ± 0.0687
CEVAL (Advanced Mathematics) 1 0 acc 0.4737 ± 0.1177
CEVAL (Art Studies) 1 0 acc 0.4545 ± 0.0880
MMLU MMLU (General) N/A 0 acc 0.6048 ± 0.0039
MMLU (Humanities) N/A 0 acc 0.5552 ± 0.0067
MMLU (STEM) N/A 0 acc 0.5214 ± 0.0086
CMMLU CMMLU (General) N/A 0 acc 0.3548 ± 0.0044
CMMLU (Normalized) N/A 0 acc_norm 0.3548 ± 0.0044