--- license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_distilbert results: [] --- # my_distilbert This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1515 - Precision: 0.8038 - Recall: 0.8108 - F1: 0.8073 - Accuracy: 0.9574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 400 | 0.1692 | 0.7741 | 0.7904 | 0.7822 | 0.9516 | | 0.2767 | 2.0 | 800 | 0.1524 | 0.7875 | 0.8010 | 0.7942 | 0.9547 | | 0.1341 | 3.0 | 1200 | 0.1505 | 0.8068 | 0.8050 | 0.8059 | 0.9567 | | 0.1072 | 4.0 | 1600 | 0.1498 | 0.7968 | 0.8121 | 0.8044 | 0.9568 | | 0.0884 | 5.0 | 2000 | 0.1515 | 0.8038 | 0.8108 | 0.8073 | 0.9574 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.13.3